Reduction?

A problem P_1 reduces to a problem P_2 means:

“If we have a solution for P_2, then we have a solution for P_1.”
Reduction?

A problem P_1 reduces to a problem P_2 means:

“If we have a solution for P_2, then we have a solution for P_1.”

Which is not true?

A. A_{TM} reduces to $HALT_{TM}$
B. $HALT_{TM}$ reduces to A_{TM}
C. EQ_{DFA} reduces to E_{DFA}
D. Σ^* reduces to EQ_{CFG}
E. EQ_{CFG} reduces to Σ^*
Reduction?

A problem P_1 reduces to a problem P_2 means:

“If we have a solution for P_2, then we have a solution for P_1.”

If P_1 is decidable, must P_2 also be decidable?

A. Yes
B. No
C. I don’t know.

Solving a problem means deciding membership in a language.
Reduction?

A problem P_1 reduces to a problem P_2 means:

“If we have a solution for P_2, then we have a solution for P_1.”

If P_2 is decidable, must P_1 also be decidable?

A. Yes
B. No
C. I don’t know.

Solving a problem means deciding membership in a language
Reduction?

A problem P_1 reduces to a problem P_2 means:

“If we have a solution for P_2, then we have a solution for P_1.”

If P_2 is decidable, must P_1 also be decidable?

A. Yes
B. No
C. I don’t know.

Solving a problem means deciding membership in a language

Contrapositive?
Reduction?

If \(P_1 \) reduces to \(P_2 \) and \(P_1 \) is undecidable, then \(P_2 \) is undecidable.

Strategy: to prove that a problem \(P \) is undecidable, prove that a problem we know to be undecidable reduces to it.

[Let \(P \) play the role of \(P_2 \).]
Claim: E_{TM} is undecidable. (Theorem 5.2)

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is empty} \} \]

i.e. want to recognize codes of TMs that always reject /loop

• Proof by reduction?

To use proof by reduction to prove that E_{TM} is undecidable, we must reduce an undecidable set to E_{TM}
Claim: E_{TM} is undecidable.

- **Proof by reduction**

 - **Goal:** show that A_{TM} reduces to E_{TM}.
 - i.e. Build an algorithm that uses a decider for E_{TM} as a subroutine and that decides A_{TM}

 - **Assume:** have a TM, R, that decides E_{TM}

 - **Build:** new TM, M_{ATM}, that decides A_{TM}

 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.

 "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.\"
Claim: E_{TM} is undecidable.

Proof by reduction…

- Assume: have a TM, R, that decides E_{TM}
- Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.

"On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.

Is X a decider?
A. Yes
B. No
C. I don't know.
Claim: E_{TM} is undecidable.

- Proof by reduction…
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M, w>$ and w is in $L(M)$.
 - "On input $<M, w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.

What does it mean if $L(X)$ is empty?
A. x is the empty string
B. $x = w$
C. $X = M$
D. M accepts w
E. M rejects w
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.
 - "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.
 - Run R on $<X>$.
 - If R accepts, *reject*; if R rejects, *accept."
Claim: E_{TM} is undecidable.

- **Proof by reduction…**
 - Assume: have a TM, R, that decides E_{TM}
 - Build: new TM, M_{ATM}, that decides A_{TM}
 - Always halts
 - Accepts iff input $<M,w>$ and w is in $L(M)$.

- "On input $<M,w>$:
 - First, build the TM X which, on input x, ignores x and simulates M on w.
 - Run R on $<X>$.
 - If R accepts, reject; if R rejects, accept."

- Correctness: ...

Is this machine M_{ATM} a decider?

A. Yes
B. No
C. I don’t know.
So far

Decidable

A_{DFA}
E_{DFA}
EQ_{DFA}

Undecidable

A_{TM}
$HALT_{TM}$
E_{TM}

To think about:
Are these undecidable languages recognizable?

Give algorithm!

Diagonalization OR reduction
General approach

To prove that \{ <M> | M is a TM and L(M) has property P } is undecidable

• Assume **towards a contradiction** that R is a decider for \{ <M> | M is a TM and L(M) has P }.
• Build decider for ATM by: "On input <M,w>
 1. Construct a new TM X such that L(X) has P iff w in L(M)
 2. Run R on <X>: if accepts, accept; if rejects, reject."

Note: sometimes easier to build X so that L(X) has P iff w **not** in L(M)
Reducing other problems?

\[\text{INF}_{\text{TM}} = \{ <M> \mid M \text{ is TM and } L(M) \text{ is infinite} \} \]

To prove \(\text{INF}_{\text{TM}} \) is undecidable, we will reduce problems known to be undecidable to it. E.g.

- \(A_{\text{TM}} \): Input \(<M,w> \); Need to decide if \(w \) is in \(L(M) \).
- \(\text{HALT}_{\text{TM}} \): Input \(<M,w> \); Need to decide if \(M \) halts on \(w \).
- \(E_{\text{TM}} \): Input \(<M> \); need to decide if \(L(M) \) is empty.
Reducing other problems?

Let R decide $\text{INF}_{\text{TM}} = \{ <M> | M \text{ is TM and } L(M) \text{ is infinite} \}$

A_{TM}: Input $<M,w>$; Need to decide if w is in $L(M)$.

M_{ATM}: "On input $<M,w>$

1. Build X such that $L(X)$ is infinite iff w is in $L(M)$.
2. Run R on X. If accepts, accept; if rejects, reject."

X: "On input x

1. Run M on w. If accepts, accept; if rejects, reject."
Reducing other problems?

Let R decide $\text{INF}_\text{TM} = \{ <M> \mid M \text{ is TM and } L(M) \text{ is infinite} \}$

HALT_TM: Input $<M, w>$; Need to decide if M halts on w.

M_{HALT}: "On input $<M, w>$
1. Build X such that $L(X)$ is infinite iff ________________.
2. Run R on X. If accepts, accept; if rejects, reject."

X: "On input x
1. Run M on w. If ________________."
Reducing other problems?

Let R decide $\text{INF}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is TM and } L(M) \text{ is infinite} \}$.

HALT_{TM}: Input $\langle M, w \rangle$;

M_{HALT}: "On input $\langle M, w \rangle$

1. Build X such that $L(X)$ is infinite iff ________________.
2. Run R on X. If accepts, accept; if rejects, reject."

X: "On input x
1. Run M on w. If ________________."
Reducing other problems?

Let R decide $\textbf{INF}_{\text{TM}} = \{<M> | M \text{ is TM and } L(M) \text{ is infinite}\}$

E_{TM}: Input $<M>$; Need to decide if $L(M)$ is empty.

M_{ETM}: "On input $<M>$
1. Build X such that $L(X)$ is infinite iff $L(M)$ is not empty.
2. Run R on X. If accepts, reject; if rejects, accept."

X: "On input x
1. Run M on ________________________."
Last example

\[\text{EQ}_{\text{TM}} = \{ <M_1, M_2> \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Claim: \(\text{EQ}_{\text{TM}} \) is undecidable.

How do we pick which problem to reduce?

Option 1: "Stick with what we know" … \(A_{\text{TM}} \)
Option 2: "The road less travelled" … \(E_{\text{TM}} \)
Last example

Option 1: "Stick with what we know" … \(A_{TM} \)

Given \(M_{EQ} \) deciding \(EQ_{TM} \), build \(M_{ATM} \): "On input \(<M,w> \),
1. Build machine \(M_{acc} \) that accepts all inputs.
2. Build machine \(X \) that ignores its input and runs \(M \) on \(w \).
3. Run \(M_{EQ} \) on \(<M_{acc}, X> \). If accepts, accept; if rejects, reject."
Last example

Option 2: "The road less travelled" … E_{TM}

Given M_{EQ} deciding EQ_{TM}, build M_{ETM}: "On input $<M>$,
1. Build machine M_{rej} that rejects all inputs.
2. Run M_{EQ} on $<M_{rej}, M>$. If accepts, accept; if rejects, reject."
Exercise

Claim: Exactly one of E_{TM} and its complement is recognizable.

Proof:

Why not both?

Which is?