Counting argument

Last time:
We proved that there must be a language that is not Turing-recognizable because

- Countable: Turing-recognizable Languages
- Uncountable: All sets of strings

All sets of strings
Non-recognizable languages exist

• But what do they look like?

• What is a specific example of a language that is not Turing-recognizable? or not Turing-decidable?

• Idea: consider a set that, were it to be Turing-decidable, would have to "talk" about itself.

Diagonalization
Recall $A_{DFA} = \{<B,w> \mid B \text{ is a DFA and } w \text{ is in } L(B)\}$

$A_{TM} = \{<M,w> \mid M \text{ is a TM and } w \text{ is in } L(M)\}$

What is A_{TM}?

A. A Turing machine whose input is codes of TMs and strings.
B. A set of pairs of TMs and strings.
C. A set of strings that encode TMs and strings.
D. Not well defined.
E. I don't know.
Define the TM $\text{N} = \text{"On input } <M,w>:\text{"}
1. Simulate M on w.
2. If M accepts, accept. If M rejects, reject.
Define the TM N = "On input $<M,w>$:
1. Simulate M on w.
2. If M accepts, accept. If M rejects, reject."

What is $L(N)$?
A. A_{TM}
B. Some larger set that includes A_{TM}
C. $\{<M,w> | M \text{ is a TM and } w \text{ is a string}\}$
D. I don't know.
Define the TM \(N = \) "On input \(<M, w>\):
1. Simulate \(M \) on \(w \).
2. If \(M \) accepts, accept. If \(M \) rejects, reject."

Which statement is true?
A. \(N \) decides \(A_{TM} \)
B. \(N \) recognizes \(A_{TM} \)
C. \(N \) always halts
D. I don't know.
\[A_{TM} = \{ <M, w> \mid M \text{ is a TM and } w \text{ is in } L(M) \} \]

Define the TM \(N \) = "On input \(<M, w> \):

1. Simulate \(M \) on \(w \).
2. If \(M \) accepts, accept. If \(M \) rejects, reject."

Conclude: \(A_{TM} \) is Turing-recognizable.

Is it decidable?
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that it is.

I.e. let M_{ATM} be a Turing machine such that for every TM M and every string w,

- Computation of M_{ATM} on $<M, w>$ halts and accepts if w is in $L(M)$.
- Computation of M_{ATM} on $<M, w>$ halts and rejects if w is not in $L(M)$.

What does it mean for w not to be in $L(M)$?

A. M halts on w
B. M loops on w
C. M accepts w
D. M rejects w
E. More than one of the above
Suppose N is a TM with $L(N) = \{w \mid w \text{ starts with 0}\}$ and N loops infinitely on all strings not in $L(N)$. What is result of computation of M_{ATM} on $<N, 11>$?

- A. M_{ATM} halts and accepts.
- B. M_{ATM} halts and rejects.
- C. M_{ATM} loops.
- D. I don't know.

I.e. let M_{ATM} be a Turing machine such that for every TM M and every string w,

- Computation of M_{ATM} on $<M,w>$ halts and accepts if w is in $L(M)$.
- Computation of M_{ATM} on $<M,w>$ halts and rejects if w is not in $L(M)$.
Diagonalization proof: A_{TM} not decidable

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D =$ "On input $<M>$:

1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."
Assume, towards a contradiction, that M_{ATM} decides A_{TM}.

Define the TM D = "On input $<M>$:
1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

Is D a decider?
A. Yes: it's a TM that always halts.
B. No: it's a well-defined TM but it may loop in step 1.
C. No: it's not even a well-defined TM.
D. I don't know.
Assume, towards a contradiction, that M_{TM} decides A_{TM}.

Define the TM $D =$ "On input $<M>$:
1. Run M_{ATM} on $<M, <M>>$.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

If M_0 is a TM with $L(M_0) = \emptyset$, what is result of computation of D with input $<M_0>$?
A. Halt and accept.
B. Halt and reject.
C. Loop.
D. I don't know.
Assume, towards a contradiction, that \(M_{\text{ATM}} \) decides \(A_{\text{TM}} \).

Define the TM \(D \) = "On input \(<M>\):"

1. Run \(M_{\text{ATM}} \) on \(<M, <M>>\).
2. If \(M_{\text{ATM}} \) accepts, reject; if \(M_{\text{ATM}} \) rejects, accept."

If \(M_1 \) is a TM with \(L(M_1) = \Sigma^* \), what is result of computation of \(D \) with input \(<M_1>\)?

A. Halt and accept.
B. Halt and reject.
C. Loop.
D. I don't know.
Diagonalization proof: A_{TM} not decidable \textit{Sipser 4.11}

Assume, towards a contradiction, that M_{ATM} decides A_{TM}

Define the TM $D = "On input <M>:
1. Run M_{ATM} on <M, <M>>.
2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."$

Consider running D on input $<D>$. Because D is a decider:
- either computation halts and accepts …
- or computation halts and rejects …
Assume, towards a contradiction, that $A^{\text{TM}}_{\text{TM}}$ decides $A^{\text{TM}}_{\text{TM}}$.

Define the TM $D = \text{"On input } <M>:\n1. \text{ Run } M^{\text{ATM}} \text{ on } <M, <M>>.\n2. \text{ If } M^{\text{ATM}} \text{ accepts, reject; if } M^{\text{ATM}} \text{ rejects, accept.\"}}$

Consider running D on input $<D>$. Because D is a decider:
- either computation halts and accepts …
- or computation halts and rejects …

Diagonalization? Self-reference

"Is $<D>$ an element of $L(D)$?"
Regular

Context-Free

Turing-Decidable

\{a^n b^n | n \geq 0\}

\{a^m b^n | m,n \geq 0\}

\{a^n b^n a^n | n \geq 0\}

??

??

Turing-Recognizable
Next Time

• Another strategy for showing undecidability.

• No diagonalization (or counting).