Computational problems

A computational problem is \textbf{decidable} iff the language encoding the problem instances is decidable.
Computational problems

Sample computational problems and their encodings:

• A_{DFA} "Check whether a string is accepted by a DFA."
 \[\{ <B,w> \mid B \text{ is a DFA over } \Sigma, w \in \Sigma^*, \text{ and } w \text{ is in } L(B) \} \]

• E_{DFA} "Check whether the language of a DFA is empty."
 \[\{ <A> \mid A \text{ is a DFA over } \Sigma, L(A) \text{ is empty} \} \]

• EQ_{DFA} "Check whether the languages of two DFA are equal."
 \[\{ <A, B> \mid A \text{ and } B \text{ are DFA over } \Sigma, L(A) = L(B) \} \]

We will show that all of these problems are decidable!
Proving decidability: DFA Equality

Claim: \(\text{EQ}_{\text{DFA}} \) is decidable
Proof: WTS that \(\{ <A, B> \mid A, B \text{ are DFA over } \Sigma, L(A) = L(B) \} \) is decidable. Idea: give high-level description
Step 1: construction

Will we be able to simulate A and B?
What does set equality mean?
Can we use our previous work?
Claim: EQ_{DFA} is decidable

Proof: WTS that $\{ <A, B> | A, B \text{ are DFA over } \Sigma, L(A) = L(B) \}$ is decidable. Idea: give high-level description

Step 1: construction

Very high-level:
Build new DFA recognizing symmetric difference of $L(A)$ and $L(B)$. Check if this set is empty.
Proving decidability: DFA Equality

Claim: EQ_{DFA} is decidable

Proof: WTS that \{ <A, B> | A, B are DFA over Σ, $L(A) = L(B)$ \} is decidable. Idea: give high-level description

Step 1: construction

Define TM J by: J = "On input <A,B>:

1. Check whether A,B are valid encodings of DFA; if not, reject.
2. Construct a new DFA, D, from A,B using algorithms for complement, union, intersection of regular languages such that $L(D) = \text{symmetric difference of } L(A) \text{ and } L(B)$.
3. Run machine K on <D>.
4. If K accepts, then accept; if K rejects, then reject."
Proving decidability: DFA Equality

Step 1: construction
Define TM J by: $J = \text{"On input } <A,B>:\text{"}:
1. Check whether A, B are valid encodings of DFA; if not, reject.
2. Construct a new DFA, D, from A, B using algorithms for complement, union, intersection of regular languages such that $L(D) = \text{symmetric difference of } L(A) \text{ and } L(B)$.
3. Run machine K on $<D>$.
4. If K accepts, then accept; if K rejects, then reject."

Step 2: correctness proof
WTS (1) $L(J) = \text{EQ}_{\text{DFA}}$ and (2) J is a decider.
Proving decidability: More Examples

All proven in Sipser 4.1.

- **A\textsubscript{NFA}** "Check whether a string is accepted by an NFA."
 \{ <B,w> | B is an NFA over \(\Sigma \), w in \(\Sigma^* \), and w is in \(L(B) \) \}

- **A\textsubscript{REX}** "Check whether a regular expression generates a string."
 \{ <R,w> | R is a regular expression over \(\Sigma \) that generates w in \(\Sigma^* \) \}

- **A\textsubscript{CFG}** "Check whether a string is generated by a CFG."
 \{ <G,w> | G is a CFG over \(\Sigma \) that generates w in \(\Sigma^* \) \}

- **E\textsubscript{CFG}** "Check whether the language of a CFG is empty."
 \{ <G> | G is a CFG over \(\Sigma \) and \(L(G) \) is empty \}

- **EQ\textsubscript{CFG}** "Check whether the languages of two CFGs are equal."
 \{ <G, H> | G and H are CFGs over \(\Sigma \), \(L(G) = L(H) \) \}"
Techniques for proving decidability

- **Subroutines**: can use decision procedures of decidable problems as subroutines in other algorithms
 - Examples: A_{DFA}, E_{DFA}, EQ_{DFA}

- **Constructions**: can use algorithms for constructions as subroutines in other algorithms
 - Converting DFA to DFA recognizing complement (or Kleene star).
 - Converting two DFA/NFA to one recognizing union (or intersection, concatenation).
 - Converting NFA to equivalent DFA.
 - Converting regular expression to equivalent NFA.
 - Converting DFA to equivalent regular expression.
Undecidable?

- There are many ways to prove that a problem is decidable.
- How do we find (and prove) that a problem is not decidable?
Counting arguments

Before we proved the Pumping Lemma …

We proved there was a language that was not regular because

All sets of strings

Regular Languages

Countable

Uncountable
Counting arguments

Recall: sets A and B have the same size, $|A| = |B|$ means there is a one-to-one and onto function between them.

A set is countable iff it is either
- finite, or
- has the same size as \mathbb{N} (can list all and only the elements of the set in a sequence)
Which of the following is true?

A. Any two infinite sets have the same size.
B. If A is a strict subset of B and then A and B do not have the same size.
C. If A is a subset of B and B is countable, then A is countable.
D. If A is countable then AxA is not countable.
E. I don't know.
Examples of countable sets

\[N \]
\[Z \]
\[Q \]
\[\{0,1\}^* \]
\[\Sigma^* \text{ for any alphabet } \Sigma \]

Corollary: The set of all TMs is countable.
Sipser 4.18

Proof Idea: Each TM, \(M \), has an encoding as a string \(<M>\).
Set of all strings is countable, so is a subset of it.
Examples of uncountable sets

\mathbb{R}

$[0,1]$

\{ infinite sequences of 0s and 1s \}

$P(\{0,1\}^*)$

Diagonalization Proof: Assume towards a contradiction that the set is countable. This gives a correspondence with \mathbb{N}, but we can derive a contradiction.
Examples of uncountable sets

\mathbb{R}

$[0,1]$

\{ infinite sequences of 0s and 1s \}

$P(\{0,1\}^*)$

Diagonalization Proof: Assume towards a contradiction that the set is countable. This gives a correspondence with \mathbb{N}, but we can derive a contradiction.

What type of elements are in the set $P(\{0,1\}^*)$?

A. Binary strings

B. Regular expressions

C. Sets of binary strings

D. Sets of regular expressions

E. I don’t know
Proof that $\mathcal{P}({0,1}^*)$ is not countable

Diagonalization Proof: Assume towards a contradiction that the set is countable. This gives a correspondence with \mathbb{N}, but we can derive a contradiction.

1)	Some set of binary strings, A_1
2)	Some set of binary strings, A_2
3)	Some set of binary strings, A_3
4)	Some set of binary strings, A_4
...	...

Define a set of binary strings A that can’t be in this list to get a contradiction.
Proof that $P(\{0,1\}^*)$ is not countable

Diagonalization Proof: Assume towards a contradiction that the set is countable. This gives a correspondence with \mathbb{N}, but we can derive a contradiction.

1)	Some set of binary strings, A_1	0 in A_1 \iff 0 not in A_1
2)	Some set of binary strings, A_2	00 in A_2 \iff 00 not in A_2
3)	Some set of binary strings, A_3	000 in A_3 \iff 000 not in A_3
4)	Some set of binary strings, A_4	0000 in A_4 \iff 0000 not in A_4
...	...	0^n in A_n \iff 0^n not in A_n
Proof that $P(\{0,1\}^*)$ is not countable

Diagonalization Proof: Assume towards a contradiction that the set is countable. This gives a correspondence with \mathbb{N}, but we can derive a contradiction.

<table>
<thead>
<tr>
<th></th>
<th>Some set of binary strings, A_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2)</td>
<td>Some set of binary strings, A_2</td>
</tr>
<tr>
<td>3)</td>
<td>Some set of binary strings, A_3</td>
</tr>
<tr>
<td>4)</td>
<td>Some set of binary strings, A_4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Since A is a set of binary strings, it must appear in our list at some position, p. $A_p = A$.

But then is 0^p in A?

$0^n \in A \iff 0^n \not\in A_n$
Proof that $\mathcal{P}(\{0,1\}^*)$ is not countable

Diagonalization Proof:
Assume towards a contradiction that the set is countable. This gives a correspondence with \mathbb{N}, but we can derive a contradiction.

1) Some set of binary strings, A_1
2) Some set of binary strings, A_2
3) Some set of binary strings, A_3
4) Some set of binary strings, A_4
...

Since A is a set of binary strings, it must appear in our list at some position, p. $A_p = A$.

But then is 0^p in A?
Why is the set of Turing-recognizable languages countable?

A. It's equal to the set of all TMs, which we showed is countable.
B. It's a subset of the set of all TMs, which we showed in countable.
C. Each Turing-recognizable language is associated with a TM, so there can be no more Turing-recognizable languages than TMs.
D. More than one of the above.
E. I don't know.
Satisfied?

• Maybe not …

• What is a specific example of a language that is not Turing-recognizable? or not Turing-decidable?

• Idea: consider a set that, were it to be Turing-decidable, would have to "talk" about itself.