IoT Middleware Overview

Jug Venkatesh

System Energy Efficiency Lab

seelab.ucsd.edu
Middleware – or, haven’t we covered this already?

- Communication
- Storage
- Data management
- Software
- Platforms

IoT Applications as a Graph
So why differentiate middleware?

- Unify/standardize protocols
- Infrastructure “glue” to provide abstraction and layers
- API/Interfaces:
 - Connect with existing middleware components
 - Establish interfaces for a component to be developed/modified
Functional middleware building blocks

- Interoperability
- Security/Privacy
- Context Detection
- Device Discovery
- Scalability
Interoperation

- Network
 - Physical layer-agnostic
 - Data agnostic

- Syntactic
 - Data format/structure
 - Data translatability

- Semantic
 - Meaning of data – machine interpretation
Interoperation & Layering

- APIs & abstraction: longstanding software engineering traditions

- Help make interoperability possible:
 - Separates domain responsibilities
 - Identifies requirements for modular implementation (API)
 - Builds upon established requirements/specifications
Context Detection

- Data \rightarrow Knowledge
- Answer fundamental questions about data:
 - **What** does it mean?
 - **Who** needs to know about it?
 - **Why** is it important?
 - **When** did this happen?

- Metadata encapsulates data (more layering!)
 - Enables *automated consumption* by IoT applications
Algorithms for Context Detection

- Typically fall under machine learning:
 - **Model generation:** formulate output based on a functional combination of input
 - **Discrete-event detection:** pattern matching, anomaly detection, clustering
 - **Supervised/Unsupervised learning** of output states
 - **State models:** decision trees, Bayesian networks
Device Discovery

- Identify other nearby devices, and make yourself known
 - Semantic state – *device ontology*

- Virtual device interface
 - Identification/Association
 - Capabilities/RPCs
 - State information about rest of infrastructure

- Enables further communication
 - Transfer of information
 - Routing (P2P)
 - Application-specific implementation changes
Device Discovery Implementations

- Bluetooth Beacons
 - One-directional location/metadata detection

- WiFi Aware
 - One-directional identifier broadcast
 - Metadata can allow for ad-hoc, two-way communication

- Physical Web
 - One-way signal + URL for additional connectivity

- Protocols:
 - DNS-SD (service discovery)
 - Multicast DNS
 - W3C Network service discovery
Security & Privacy

- Fundamental problem:
 - Nodes need to discover other nodes, but still maintain privacy

- Middleware solution: multi-tier privacy (layering yet again!)
 - Management of discoverability, data access
 - Use device semantics to identify accessibility...but how to limit discoverability?
Security Implementations

- Public Key Infrastructure
 - Requires backend access

- Group Key: Authorization before Inclusion
 - Requires new device to register oneotime with backend

- Local Access Control:
 - Local DNS

- Multi-stage access:
 - Public – advertise ID only
 - Semi-Private: Authorization allows metadata access
 - Private: Full access allows data access
Scalability

- Expected:
 - Trillions of devices
 - Exabytes of data

- Current reality:
 - Millions of devices
 - Approaching petabytes of data

- Fundamental scalability problems:
 - **Storage**: persistent? raw? summarized?
 - **Processing**: how much data to use? how do applications scale with more data availability?
 - **Communication**: how much data to transmit? what infrastructure will scale to allow more data transmission while still meeting application deadlines?
Discussion: Middleware relationships