Modeling Embedded Systems

Tajana Simunic Rosing
Department of Computer Science and Engineering
University of California, San Diego.
ES Design

Hardware components

Software Components

Concept

Specification

HW/SW Partitioning

Estimation - Exploration

Design (Synthesis, Layout, ...)

Design (Compilation, ...)

Software

Hardware

Verification and Validation
Models, Languages and Tools

Model M_1 Model M_2

Language L_1 Language L_2

Tool

State machine Sequent. program Data-flow Concurrent processes

Verilog C/C++ Java VHDL

Implementation A Implementation B Implementation C

Tajana Simunic Rosing
Components of a formal design model

• Functional specification
 – Relationships between inputs, outputs & states

• Properties
 – Relations between I/O/S that can be checked against the functional specification
 – 3 types: inherent in model of computation, those that can be verified syntactically & semantically for a given specification

• Performance indices
 – Evaluate quality of design

• Constraints
 – On performance indices, usually inequalities
Design process

Design:
• A set of components interacting with each other and with the environment that is not a part of design

Model of Computation (MOC):
• Defines the behavior and interaction of the design blocks

Design process:
• Takes a model at a higher level of abstraction and refines it to a lower level along with mapping constraints, performance indices and properties to the same level

Validation:
• Process of checking if design is correct
 – Simulation/emulation, formal verification of specification or implementation

Synthesis:
• Design refinement where more abstract specifications are translated into less abstract specifications
Models of Computation Elements

• State
 – e.g. in HW :
 • Combinational states: one state for a given time \(t \)
 • Sequential states: multiple states possible for time \(t \)

• Decidability
 – Can a property be determined in a finite amount of time?

• Concurrency and communication
 – Embedded systems usually have coordinated concurrent processes -> communication required
Modes of Communication

<table>
<thead>
<tr>
<th></th>
<th>Transmitters</th>
<th>Receivers</th>
<th>Buffer Size</th>
<th>Blocking Reads</th>
<th>Blocking Writes</th>
<th>Single Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsynchronized</td>
<td>many</td>
<td>many</td>
<td>one</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Read-Modify-write</td>
<td>many</td>
<td>many</td>
<td>one</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Unbounded FIFO</td>
<td>one</td>
<td>one</td>
<td>unbounded</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Bounded FIFO</td>
<td>one</td>
<td>one</td>
<td>bounded</td>
<td>no</td>
<td>maybe</td>
<td>yes</td>
</tr>
<tr>
<td>Single Rendezvous</td>
<td>one</td>
<td>one</td>
<td>one</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Multiple Rendezvous</td>
<td>many</td>
<td>many</td>
<td>one</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Communication

- **Message Passing**
 - Non-blocking
 - Blocking

- **Extended rendezvous**

- **Shared memory**

```plaintext
process a {
  ..
  P(S)  //obtain lock
  ..  // critical section
  V(S)  //release lock
}

process b {
  ..
  P(S)  //obtain lock
  ..  // critical section
  V(S)  //release lock
}
```
Models of computation comparison

<table>
<thead>
<tr>
<th>Communication/local computations</th>
<th>Shared memory</th>
<th>Message passing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Synchronous</td>
</tr>
<tr>
<td>Communicating finite state machines</td>
<td>StateCharts</td>
<td>SDL</td>
</tr>
<tr>
<td>Data flow</td>
<td>(Not useful)</td>
<td>Kahn networks, DFG, SDF</td>
</tr>
<tr>
<td>Petri nets</td>
<td></td>
<td>various versions of Petri Nets</td>
</tr>
<tr>
<td>Discrete event (DE) model</td>
<td>VHDL*, Verilog*, SystemC*, …</td>
<td>Only experimental systems, e.g. distributed DE in Ptolemy</td>
</tr>
<tr>
<td>Von Neumann model+</td>
<td>C, C++, Java</td>
<td>C, C++, Java & libraries, ADA</td>
</tr>
</tbody>
</table>

*Classification based on implementation with centralized data structures

+Consists of a processing unit, control unit and storage for instructions & data
Model of Computation Examples

• State machine models
 – FSM, StateCharts, SDL

• Petri nets

• Communicating processes
 – Kahn processes, Communicating Sequential Processes

• Ada

• Dataflow models
 – DFG, SDFG

• Discrete event models
 – VHDL, Verilog, SystemC, SpecC

• Synchronous languages
 – Cycle based models, Esterel, Lustre
Classical automata

- **Moore-automata:**
 \[O = H(S); \quad S^+ = f(I, S) \]

- **Mealy-automata**
 \[O = H(I, S); \quad S^+ = f(I, S) \]

Diagram:
- Input `I`
- Clock
- Internal state `S`
- Output `O`
- States: `S0`, `S1`, `S2`, `S3`
Finite-state machines (FSMs)

Elevator Control process using a state machine

- **Idle**
 - req = floor
 - u,d,o,t = 1,0,0,0

- **GoingUp**
 - req > floor
 - !(req > floor)
 - u,d,o,t = 0,0,1,0

- **GoingDn**
 - req < floor
 - u,d,o,t = 0,1,0,0

- **DoorOpen**
 - timer < 10
 - u,d,o,t = 0,0,1,1

- u is up, d is down, o is open
- t is timer_start
Elevator Control with Fire Mode

- **FireMode**
 - When `fire` is true, move elevator to 1st floor and open door
Models of Computation

- **State Machine Models**
 - FSM, StateCharts, CFM, SDL
- **Petri nets**
- **Communicating Processes**
 - Kahn processes, Communicating Sequential Processes
- **Ada**
- **Dataflow models**
 - DFG, SDFG
- **Discrete Event Systems**
 - VHDL, Verilog, SystemC, SpecC
- **Synchronous languages**
 - Cycle based models, Esterel, Lustre
StateCharts: Hierarchy
Back to Elevator Example
StateCharts: Default state

S

A -> B -> C -> D -> E

Z

A -> B -> C -> D -> E

S

Tajana Simunic Rosing
StateCharts: History
History & default state

same meaning
StateCharts: Concurrency

![Statechart Diagram]

- **Line-monitoring**
 - Lwait
 - Lproc
 - Ring
 - Hangup (caller)

- **Key-monitoring (excl. on/off)**
 - Kwait
 - Kproc
 - Key pressed
 - Done

- **State Transitions**
 - Key-on
 - Key-off
 - Off
Conditional Transitions

Diagram showing transitions between states such as Error, Message_Received, Receiving, Uploading_Data, Processing_Command, Updating_Parameters, and Storing_Sense_Data. The transitions are conditional based on commands like CMDID(msg) being equal to Upload, Update, or Store.
StateCharts: Timers

![StateChart Diagram]

- Transition labeled 'a'
- Timer labeled '20 ms'
- Transition labeled 'timeout'

Tajana Simunic Rosing
Example: Answering machine

Diagram:
- Lproc
- 4 s
- timeout
- play text
- 8 s record
- return (callee)
- dead
- talk
- lift off
- beep
- beep
- silent
- timeout
StateCharts: edge labels

- **Events:**
 - Exist only until the next evaluation of the model
 - Can be either internally or externally generated

- **Conditions:**
 - Refer to values of variables that keep their value until they are reassigned

- **Reactions:**
 - Can either be assignments for variables
 - or creation of events

- **Example:**
 - `service-off [not in Lproc] / service:=0`
Propagations and Broadcasts

Source: B. P. Douglass & iLogix
Status= values of all variables + set of events + current time
Step = execution of the three phases

Three phases:
1. Effects of external changes on events and conditions are evaluated,
2. The set of transitions to be made in the current step and right hand sides of assignments are computed,
3. Transitions become effective, variables obtain new values.
StateCharts Simulation Example

\[\text{swap}\]

\[e/a := b\]

\[e/b := a\]

\[/a := 1; b := 0\]
Statecharts – Example 1

Statechart Example

Equivalent FSM Representation
Statecharts – Example 2

Statechart Example

Equivalent FSM Representation
StateCharts to FSM
StateCharts: Application Examples

• Power converter system for trams, metros & trains
 – System-level modeling and automated code generation
 – Guarantee latencies less than 10 microseconds
 – Cut development time by 50%
 – Time from design completion to first prototype down to 1hr from 3 months
 – Defect free code automatically generated for a number of RTOS implementations
StateCharts: Application Examples

- Development of defibrillator and pacemaker technology
 - Model system behavior before requirements are finalized
 - Check that SW provides mathematically consistent representation of the product’s system – correct and unambiguous representation of model behavior
 - More accurate and extensive verification – guarantee device works 100% of the time for at least 7-10yrs
 - Cut product verification costs by 20%
 - 15-20% overall cost reduction per projects on future development
StateCharts: Application Examples

• Jet engine electronic controller design
 – System level specification and consistency check
 – Construction of on-screen simulation of the cockpit display
 – Evaluate correctness in normal and faulty operation modes
 – Project so successful that now StateCharts are used for:
 • Independent overspeed protection system
 • Thrust reverse control system
 • Engine fuel control system

By BMW
StateCharts: Summary

- Hierarchy
- AND- and OR-super states
- Default state, History
- Timing behavior
- State oriented behavior
- Edge labels
- Concurrency
- Synchronization & communication
 - Broadcast, shared memory
- Simulation
- Cross compiling
Models of Computation

• State Machine Models
 – FSM, StateCharts, SDL

• Petri nets

• Communicating Processes
 – Kahn processes, Communicating Sequential Processes

• Ada

• Dataflow models
 – DFG, SDFG

• Discrete Event Systems
 – VHDL, Verilog, SystemC, SpecC

• Synchronous languages
 – Cycle based models, Esterel, Lustre
SDL

- Designed for specification of distributed systems.
 - Dates back to early 70s, formal semantics defined in the late 80s, updates from 1984 to 1999 by International Telecommunication Union (ITU)
 - Provides textual and graphical formats
- Similar to StateCharts, each FSM is called a **process**, but it uses message passing instead of shared memory for communication
- Supports operations on data
SDL-representation of FSMs/processes

Process P1

- **State:** A, B, C, D, E
- **Input:** g, h, i, j, f, v
- **Output:** w, x, y, z, k

Diagram shows transitions between states with inputs and outputs labeled accordingly.
Communication among SDL-FSMs

- Communication between FSMs (or “processes”) is based on **message-passing**, assuming a **potentially indefinitely large FIFO-queue**.

 - Each process fetches next entry from FIFO,
 - checks if input enables transition,
 - if yes: transition takes place,
 - if no: input is ignored (exception: SAVE-mechanism).
Determinate?

- Let tokens be arriving at FIFO at the same time:
 Order in which they are stored is unknown:

All orders are legal so simulators can show different behaviors for the same input, all of which are correct.
Operations on data

- Variables can be declared locally for processes.
- Their type can be predefined or defined in SDL itself.
- SDL supports abstract data types (ADTs)

DCL
Counter Integer;
Date String;

Counter := Counter + 3;

Counter

(1:10) (11:30) ELSE
Process interaction diagrams

- Interaction between processes can be described in process interaction diagrams, which are a special case of block diagrams.
- In addition to processes, these diagrams contain channels and declarations of local signals.

![Diagram](image.png)
Hierarchy in SDL

- Process interaction diagrams can be included in **blocks**. The root block is called **system**.

Processes cannot contain other processes, unlike in StateCharts.
Timers

- Timers can be declared locally
- Elapsed timers put signal into queue, but are not necessarily processed immediately
- RESET removes a timer also from FIFO-queue.
Description of network protocols
Vending machine example

Machine sells pretzels, chips, cookies, & doughnuts

Accepts nickels, dime, quarters, and half-dollars

It is not a distributed application.

Overall view of vending machine

System VendingMachine

- Coins
 - [nickel, dime, quarter, half]
 - CoinInterface
 - Ccoins
 - [add]
 - Ccointctrl
 - [rej_further_coins, accept_coins]
 - Crequest
 - [pur_pretzel, pur_chip, pur_cookie, pur_doughnut, reload_pretzel, reload_chip, reload_cookie, reload_doughnut]

- Creject
 - [reject_coin]

- DecodeRequests
 - [amount_entered]
 - Cemptdisplay
 - [pretzel_empty, chip_empty, cookie_empty, doughnut_empty]
 - CspltPurchased
 - [spit_pretzel, spit_chip, spit_cookie, spit_doughnut]

- CspltChange
 - [spit_nickel, spit_dime]

- ChangeInterface
 - [spit_change]

- ExaktDisplay
 - [exact_only]

SIGNAL

- [dime, nickel, quarter, half, pur_pretzel, pur_cookie, pur_doughnut, pur_chip, add(int), spit_change(int), amount_entered(int), reject_further_coins, exact_only, accept_coins, reject_coins, spit_dime, spit_nickel, pretzel_empty, spit_pretzel, chip_empty, spit_chip, cookie_empty, spit_cookie, doughnut_empty, spit_doughnut, reload_pretzel, reload_chip, reload_cookie, reload_doughnut]

SYNTYPE

- items = INTEGER
 - CONSTANTS 0:7
 - ENDSYNTYPE

- int = INTEGER
 - CONSTANTS 0:127
 - ENDSYNTYPE
Decode Requests

CONNECT Cadd AND Radd;
CONNECT Ccoinctrl AND Rcoinctrl;
CONNECT Cchange AND Rchange;
CONNECT CAmountDisplay AND RamountDisplay;
CONNECT Crequest AND Rpretzel,Rchip,Rcookie,
 Rdoughnut;
CONNECT CemptyDisplay AND Rpretzel_e,Rchip_e,
 Rcookie_e,Rdoughnut_e;
CONNECT CspitPurchased AND Rpretzel_s,
 Rchip_s,Rcookie_s,Rdoughnut_s;

SYNONYM PRETZEL int=50
SYNONYM PCHIP int=15;
SYNONYM PCOOKIE int=55;
SYNONYM PDOUGHNUT int=60;
SYNONYM PMAX int=60;
SYNONYM NITEMS items=7;

SIGNAL sub(int);
Process ChipHandler

DCL nchip items:=NITEMS;

VIEWED current int;

VIEW(current) >= PCHIP

sub(PCHIP)

nchip:= nchip-1;

spit_chip

nchip=0

no

pur_wait

yes

chip_empty

empty

reload_chip

nchip:=NITEMS

pur_wait

pur_wait

no

pur_wait
SDL: Real World Example

• ADSL design
 – Ideal language for telecom design; communication between components and their different states of operation can be easily modeled with SDL
 – Object orientation and automatic code generation significantly simplified system design verification
 – Early testing done on SDL – significant savings in the cost of expensive test equipment
SDL summary

– FSM model for the components,
– Non-blocking message passing for communication,
– Implementation requires bound for the maximum length of FIFOs; may be very difficult to compute,
– Not necessarily determinate
– Timer concept adequate just for soft deadlines,
– Limited way of using hierarchies,
– Limited programming language support,
– No description of non-functional properties,
– Excellent for distributed applications (used for ISDN),
– Commercial tools available (see http://www.sdl-forum.org)
Models of Computation

• State Machine Models
 – FSM, StateCharts, SDL, CFSM

• Petri nets

• Communicating Processes
 – Kahn processes, Communicating Sequential Processes

• Ada

• Dataflow models
 – DFG, SDFG

• Discrete Event Systems
 – VHDL, Verilog, SystemC, SpecC

• Synchronous languages
 – Cycle based models, Esterel, Lustre
Petri net definitions

A Petri net is a 5-tuple, $PN = (P, T, F, W, M_0)$ where:

- $P = \{p_1, p_2, \ldots, p_m\}$ is a finite set of places,
- $T = \{t_1, t_2, \ldots, t_n\}$ is a finite set of transitions,
- $F \subseteq (P \times T) \cup (T \times P)$ is a set of arcs (flow relation),
- $W : F \rightarrow \{1, 2, 3, \ldots\}$ is a weight function,
- $M_0 : P \rightarrow \{0, 1, 2, 3, \ldots\}$ is the initial marking,
- $P \cap T = \emptyset$ and $P \cup T \neq \emptyset$.

A Petri net structure $N = (P, T, F, W)$ without any specific initial marking is denoted by N.

A Petri net with the given initial marking is denoted by (N, M_0).

<table>
<thead>
<tr>
<th>Input Places</th>
<th>Transition</th>
<th>Output Places</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preconditions</td>
<td>Event</td>
<td>Postconditions</td>
</tr>
<tr>
<td>Input data</td>
<td>Computation step</td>
<td>Output data</td>
</tr>
<tr>
<td>Input signals</td>
<td>Signal processor</td>
<td>Output signals</td>
</tr>
<tr>
<td>Resources needed</td>
<td>Task or job</td>
<td>Resources released</td>
</tr>
<tr>
<td>Conditions</td>
<td>Clause in logic</td>
<td>Conclusion(s)</td>
</tr>
<tr>
<td>Buffers</td>
<td>Processor</td>
<td>Buffers</td>
</tr>
</tbody>
</table>

• H_2O Example

Source: Murata'89
Petri net – Train tracks model

train wanting to go right

train going to the right

track available

train going to the left
Concurrency, Causality, Choice

[Diagram of concurrency and causality with transitions labeled t1, t2, t3, t4, t5, t6, and a conflict indication labeled 'Choice, conflict']
Petri nets: confusion 😊

- Concurrency & conflict lead to confusion....
 - Symmetric
 - Asymmetric

Source: Murata'89
Conflict for resource „track“

train wanting to go right

train going to the right

track available

train going to the left
Communication Protocol

![Diagram of communication protocol]

- **P1**
 - Send msg
 - Receive Ack
- **P2**
 - Receive msg
 - Send Ack

Tajana Simunic Rosing
Communication Protocol
Communication Protocol
Communication Protocol
Communication Protocol
Communication Protocol
Producer-Consumer Problem

![Diagram of Producer-Consumer Problem]
Producer-Consumer with Priority

- Modeling synchronization control when sharing resources
 - Multiprocessor CPUs, distributed systems
Petri net definitions

A Petri net is a 5-tuple, \(PN = (P, T, F, W, M_0) \) where:

- \(P = \{p_1, p_2, \ldots, p_m\} \) is a finite set of places,
- \(T = \{t_1, t_2, \ldots, t_n\} \) is a finite set of transitions,
- \(F \subseteq (P \times T) \cup (T \times P) \) is a set of arcs (flow relation),
- \(W: F \rightarrow \{1, 2, 3, \ldots\} \) is a weight function,
- \(M_0: P \rightarrow \{0, 1, 2, 3, \ldots\} \) is the initial marking,
- \(P \cap T = \emptyset \) and \(P \cup T \neq \emptyset \).

A Petri net structure \(N = (P, T, F, W) \) without any specific initial marking is denoted by \(N \).

A Petri net with the given initial marking is denoted by \((N, M_0) \).

<table>
<thead>
<tr>
<th>Input Places</th>
<th>Transition</th>
<th>Output Places</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preconditions</td>
<td>Event</td>
<td>Postconditions</td>
</tr>
<tr>
<td>Input data</td>
<td>Computation step</td>
<td>Output data</td>
</tr>
<tr>
<td>Input signals</td>
<td>Signal processor</td>
<td>Output signals</td>
</tr>
<tr>
<td>Resources needed</td>
<td>Task or job</td>
<td>Resources released</td>
</tr>
<tr>
<td>Conditions</td>
<td>Clause in logic</td>
<td>Conclusion(s)</td>
</tr>
<tr>
<td>Buffers</td>
<td>Processor</td>
<td>Buffers</td>
</tr>
</tbody>
</table>

\(\text{H}_2\text{O} \) Example

\[H_2 + O_2 \rightarrow H_2O \]
Petri Net Properties

• Behavioral
 – Reachability
 • Marking M reachable from marking M₀
 – k - Boundedness
 • Number of tokens in each place does not exceed finite number k
 • Safe if 1-bounded
 – Liveness
 • Can fire any transition of the net – related to absence of deadlocks

• Structural
 – Controlability
 • Any marking can be reached from any other marking
 – Structural boundedness
 – Conservativeness – weighted sum of tokens constant
PN Properties - Reachability

\[M_0 = (1,0,1,0) \]
\[M = (1,1,0,0) \]

\[M_0 = (1,0,1,0) \]
\[M_1 = (1,0,0,1) \]
\[M = (1,1,0,0) \]
PN Properties – Deadlock-free
PN Properties – Deadlock-free

Deadlock-free
Petri Net Liveness

• **L0-live (dead):** a particular transition can never fire
 – In the figure below, t_0 can never fire
 • see reachability graph
Petri Net Liveness

- **L1-live**: a particular transition can fire at least once for some firing sequence
 - In the figure below, \(t_1 \) can only fire once, for some firing sequence
Petri Net Liveness

- **L2-live**: a particular transition can fire k times for a particular firing sequence, for any k.
 - In the figure below, t_2 can only fire once, twice, etc, for different firing sequences.
Petri Net Liveness

- **L3-live**: a particular transition can fire infinitely in a particular firing sequence.
 - In the figure below, t_3 can fire infinitely for the firing sequence $t_3, t_3, t_3, t_3, ...$
 - Note that the number of times t_1 and t_2 fire is finite for any firing sequence.
PN Properties - Boundedness
PN Properties - Boundedness
PN Properties - Boundedness

Unbounded
PN Properties - Boundedness

Unbounded
PN Properties - Boundedness
PN Properties - Conservation

Not conservative
PN Properties - Conservation

Not conservative
PN Properties - Conservation
Petri Nets - Analysis

• Structural
 – Incidence matrix

• State Space Analysis techniques
 – Coverability Tree
 – Reachability Graph
PN Properties – Analysis

Incident Matrix

State Equations
Petri Nets – Coverability Tree
Example

• Assume
 – $e=6$
 – $Mo=[0 \ 12]$

• Can we reach $M=[6 \ 0]$ from Mo?
• Can it be statically scheduled?
• What size buffers are needed at $P1$ & $P2$?
Petri net problem

Consider the Petri net defined by:

\[P = \{ p_1, p_2, p_3 \} \]

\[T = \{ t_1, t_2, t_3 \} \]

\[A = \{ (p_1 \ t_1) (p_1 \ t_3) (p_2 \ t_1) (p_2 \ t_2) (p_3 \ t_3) (t_1 \ p_2) (t_1 \ p_3) (t_2 \ p_3) (t_3 \ p_1) (t_3 \ p_2) \} \]

With all weights being one except \(w(p_1 \ t_1) = 2 \)
Draw a Petri net that describes a game in which there is an urn with black and red balls. In each round the player takes two balls:

- If both are black, then the player returns one black
- If both are red, then the player returns one red
- If one is red and one is black, then the player returns one red.
Petri nets: Applications

• Model, simulate and analyze networking protocols (e.g. TCP, Ethernet, etc)
• Model, simulate and analyze complex network elements (e.g. router, switch, optical mux); check their logical behavior
• Design and analyze network performance and AoS with logical models of traffic generators, protocols and network elements
• Study network behavior characteristics (e.g. throughput, blocking probability etc)
Petri nets in practice

• Example apps:
 – TCP performance
 – Security system design and automated code generation
 – MAC design
 –
Petri Nets - Summary

• PN Graph
 – places (buffers), transitions (action), tokens (data)

• Firing rule
 – Transition enabled if enough tokens in a place

• Properties
 – Structural (consistency, structural boundedness)
 – Behavioral (reachability, boundedness, etc.)

• Analysis techniques

• Applications
 – Modeling of resources, mutual exclusion, synchronization
Models of Computation

- State Machine Models
 - FSM, StateCharts, SDL, CFSM
- Petri nets
- Communicating Processes
 - Communicating Sequential Processes, Ada, Kahn processes
- Dataflow models
 - DFG, SDFG
- Discrete Event Systems
 - VHDL, Verilog, SystemC, SpecC
- Synchronous languages
 - Cycle based models, Esterel, Lustre
- HW Models
- Unified Modeling Language (UML)
Process

• A sequential program
 – Executes concurrently with other processes

• Basic operations on processes
 – Create & terminate, suspend & resume, join

• Process communication
 – Shared memory (and mutexes)
 – Message passing
 – Rendezvous
task screen_out is
entry call_ch(val:character; x, y: integer);
entry call_int(z, x, y: integer);
end screen_out;

task body screen_out is
...
select
 accept call_ch ... do ..
end call_ch;
or
 accept call_int ... do ..
end call_int;
end select;

Sending a message:
begin
 screen_out.call_ch('Z',10,20);
exception
 when tasking_error =>
 (exception handling)
end;
Nodes are a „program“ described in some programming language
Task graphs - Timing

Arrival time deadline

(0,7] (1,8] (3,10]

T_1 T_2 T_3
Task graphs - I/O
Task graphs - Shared resources
Task graphs - Periodic schedules

\[\ldots J_{n-1} \rightarrow J_n \rightarrow J_{n+1} \]

.. infinite task graphs
Task graphs - Hierarchy
Design problem

Your job is to design a process P with the sub tasks:

\[Q_1(x,y) = (u,v) = (2x, x+y) \]
\[Q_2(x,y) = 2x + y \]
\[Q_3(x,y) = x + 2y \]

Assume you have an adder (2s, 1W) and a shifter (1s, 0.5W) to implement P. Show the fastest possible schedule, and get the total energy consumption for P. Do your results change if battery can supply maximum 1W at any point in time?
Models of Computation

- State Machine Models
 - FSM, StateCharts, SDL, CFSM
- Petri nets
- Communicating Processes
 - Communicating Sequential Processes, Ada
- **Dataflow models**
 - Kahn processes
 - DFG, SDFG
- Discrete Event Systems
 - VHDL, Verilog, SystemC, SpecC
- Synchronous languages
 - Cycle based models, Esterel, Lustre
- Petri nets
- HW Models
- Unified Modeling Language (UML)
Kahn process network

KPN - executable task graphs
Communication is via infinitely large FIFOs
Nonblocking write, blocking read => DETERMINATE

Important properties of KPN:
Continuous
Output signals can be gradually produced; never have to consume all input to produce some output

Monotonic
Output depends on input but doesn’t change previous output

Continuous monotonic processes => ITERATIVE
Petri net model of a Kahn process

- KPNs are deterministic:
 - Output determined by
 - Process, network, initial tokens
Dataflow Process Networks

- Dataflow:
 - Maps input tokens to output tokens
 - Outputs function of current inputs
 - No need to keep state on suspend/resume
 - Scheduling for resource sharing

\[
Z = (A + B) \times (C - D)
\]

Nodes with arithmetic transformations:

Nodes with more complex transformations:

- modulate
- convolve
- transform
Dataflow process examples

- HW resource scheduling
 - Constraints: 2 mult, 2 ALU
 - List scheduler
 - Additional constraints
 - Performance
 - Power
 - Area etc.
Synchronous dataflow
SDF notation

• Nodes have rates of data production or consumption.
• Edges have delays.
 – Delays do not change rates, only the amount of data stored in the system at startup.
SDF examples

n1 \rightarrow n2 \rightarrow n3

n1 \rightarrow n2 \rightarrow n3
SDF Scheduling

- By building a set of “flow and conservation” equations

\[
\begin{align*}
3a - 2b &= 0 \\
4b - 3d &= 0 \\
b - 3c &= 0 \\
2c - a &= 0 \\
d - 2a &= 0
\end{align*}
\]

Solution: \(a = 2c; \ b = 3c; \ d = 4c\)

Possible schedules:
- BBBCDDDDAAA
- BDBDBCADDA
- BBDDDBDDCAA
- …
SDF problem
Dataflow process examples

• Design of a first 802.11b WLAN card
 – New product – combines RF, MAC and PHY; lots of DSP
 – Implemented on an ASIC
 – Previous design hand coded VHDL

• System level design with COSSAP by Synopsys
 – Explore architectural trade-offs – what in gates, what on DSP
 – Scheduling trade-offs: latency, area, propagation delay between clocks, and vendor library

• Results:
 – Reduced time to market by a factor of TWO!
 – Architectural exploration within 10% of actual measurements in terms of timing and area
Models of Computation

- State Machine Models
 - FSM, StateCharts, SDL, CFSM
- Petri nets
- Communicating Processes
 - Kahn processes, Communicating Sequential Processes
- Ada
- Dataflow models
 - DFG, SDFG
- Discrete Event Systems
 - VHDL, Verilog, SystemC, SpecC
- Synchronous languages
 - Cycle based models, Esterel, Lustre
- HW Models
- Unified Modeling Language (UML)
Discrete Events

• Notion of time is fundamental: global order
 – events are objects which carry ordered time info
 – there is a casual relationship between events

• DE simulator maintains global event queue
 – Verilog, VHDL

• Expensive - ordering tame stamps can be time consuming

• Large state & Low Activity => Effective simulation

• Simultaneous events lead to non-determinacy
 – require complex conflict resolution schemes
 – e.g. delta delays
Simultaneous Events in the Discrete Event Model

B has 0 delay

B has delta delay
entity full_adder is
port(a, b, carry_in: in Bit; -- input ports
 sum, carry_out: out Bit); -- output ports
end full_adder;

Entity declaration

Architecture 1

Architecture 2

Architecture 3

....
architecture structure of full_adder is
 component half_adder
 port (in1, in2: in Bit; carry, sum: out Bit);
 end component;
 component or_gate
 port (in1, in2: in Bit; o: out Bit);
 end component;
 signal x, y, z: Bit; -- local signals
begin -- port map section
 i1: half_adder port map (a, b, x, y);
 i2: half_adder port map (y, carry_in, z, sum);
 i3: or_gate port map (x, z, carry_out);
end structure;

architecture behavior of full_adder is
begin
 sum <= (a xor b) xor carry_in after 10 Ns;
 carry_out <= (a and b) or (a and carry_in) or (b and carry_in) after 10 Ns;
end behavior;
VHDL: signal strengths

\[
\begin{align*}
'X' & \quad \text{strongest} \\
'0' & \quad '1' \\
'W' & \quad \text{medium strength} \\
'L' & \quad 'H' \\
'W' & \quad \text{pre-charged} \\
'I' & \quad 'h' \\
'Z' & \quad \text{weakest}
\end{align*}
\]
VHDL processes & waits

Processes model HW parallelism

```vhdl
process
begin
  a <= b after 10 ns
end process
```

Waits:

```vhdl
wait until signal list;
wait until a;
wait until condition;
  wait until c='1';
wait for duration;
  wait for 10 ns;
wait; suspend indefinitely
wait on = sensitivity list
```

```vhdl
process (x, y)
begin
  prod <= x and y;
  wait on x, y;
end process;
```

```vhdl
process
begin
  prod <= x and y;
end process;
```
VHDL Simulation

Start of simulation

Future values for signal drivers

Assign new values to signals

Evaluate processes

Activate all processes sensitive to signal changes
VHDL Simulation of an RS FF

architecture one of RS_Flipflop is
begin
process: (R,S,Q,nQ)
begin
Q <= R nor nQ;
 nQ <= S nor Q;
end process;
end one;

δ cycles reflect the fact that no real gate comes with zero delay.
VHDL Summary

- Entities and architectures
- Multiple-valued logic
- Modeling hardware parallelism by processes
 - Wait statements and sensitivity lists
- VHDL simulation cycle
 - δ cycles
SystemC: Motivation
SystemC: Methodology
Models of Computation

- State Machine Models
 - FSM, StateCharts, SDL, CFSM
- Petri nets
- Communicating Processes
 - Kahn processes, Communicating Sequential Processes
- Ada
- Dataflow models
 - DFG, SDFG
- Discrete Event Systems
 - VHDL, Verilog, SystemC, SpecC
- **HW Models**
- Synchronous languages
 - Cycle based models, Esterel, Lustre
- Unified Modeling Language (UML)
Levels of hardware modeling

1. System level
2. Algorithmic level
3. Instruction set level
4. Register-transfer level (RTL)
5. Gate-level models
6. Switch-level models
7. Circuit-level models
8. Device-level models
9. Layout models
10. Process and device models
Instruction level

<table>
<thead>
<tr>
<th>Assembler (MIPS)</th>
<th>Simulated semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>or $1,$2,$3</code></td>
<td><code>Reg[1] := Reg[2] \lor Reg[3]</code></td>
</tr>
<tr>
<td><code>andi $1,$2,100</code></td>
<td><code>Reg[1] := Reg[2] \land 100</code></td>
</tr>
<tr>
<td><code>sll $1,$2,10</code></td>
<td><code>Reg[1] := Reg[2] \ll 10</code></td>
</tr>
<tr>
<td><code>srl $1,$2,10</code></td>
<td><code>Reg[1] := Reg[2] \gg 10</code></td>
</tr>
</tbody>
</table>
Register transfer level: MIPS
Gate-level model
Switch level model
Circuit level model

.SUBCKT NAND2 VDD VSS A B OUT
MN1 I1 A VSS VSS NFET W=8U L=4U AD=64P AS=64P
MN2 OUT B I1 VSS NFET W=8U L=4U AD=64P AS=64P
MP1 OUT A VDD VDD PFET W=16U L=4U AD=128P AS=128P
MP2 OUT B VDD VDD PFET W=16U L=4U AD=128P AS=128P
CA A VSS 50fF
CB B VSS 50fF
COUT OUT VSS 100fF
.ENDS
Device level

Measured and simulated currents
Layout model
Process model

![Graph showing simulated and measured values](image)

- **Simulated**
- **Measured**
Models of Computation

- State Machine Models
 - FSM, StateCharts, SDL, CFSTM
- Petri nets
- Communicating Processes
 - Kahn processes, Communicating Sequential Processes
- Ada
- Dataflow models
 - DFG, SDFG
- Discrete Event Systems
 - VHDL, Verilog, SystemC, SpecC
- HW Models
- Synchronous reactive languages
 - Cycle based models, Esterel, Lustre
- Unified Modeling Language (UML)
Reactive Synchronous Languages

- Assumptions
 - Instantaneous reactions
 - Discrete event
 - Static

- Cycle based models
 - Excellent for (single) clocked synchronous circuits

- Control flow oriented (imperative) languages
 - Esterel

- Data flow languages
 - Lustre, Signal

- Deterministic behavior

- Simulation, software and hardware synthesis, verification
Lustre example
Reactive Synchronous Models: Esterel

Statements

- Emit S
- Present S then p else q end
- Pause
- P; Q, P||Q
- Loop p end
- Await S
- Abort p when S
- Suspend p when S
- Sustain S = (loop emit S; pause end)
Abort Statement

```plaintext
abort
pause;
pause;
emit A
when B;
emit C
```

- Normal termination
- Aborted termination
- Aborted termination, Emit A preempted
- Normal termination
 B not checked in the first cycle (like await)
Esterel Examples

emit A;
emit B;
pause;
loop
 present C then emit D end;
present E then emit F end;
pause;
end

A D D
B F F
C C
E E

Esterel Examples

```plaintext
[  
  await A; emit C 
  || 
  await B; emit D 
]; 
emit E
```

A B
C D E
Time in Esterel

- **Global clock with precise control over when events appear**
 - At every tick: read inputs, compute, output

- **Statements**
 - A bounded number in one cycle
 - Emit, present, loop
 - Take multiple cycles:
 - Pause, await, sustain

- **Causality analysis**
 - Deterministic & non-contradictory
module Test:
input a,b,c,d,r;
output x,y,z;
loop
 [await a; emit x ||
 await b]
 emit z;
 await c;
 await d;
 emit z;
each r
Esterel Application Examples

- TI used Esterel to automatically synthesize full coverage tests for a safety-critical design
 - Showed functional coverage covered only 30% of the design, with Esterel 100% covered

- Airbus
 - Significant decrease in errors due to increase in automated code generation (40-70%)
 - e.g. fly by wire controls & automatic flight control 70%, display computer 50%, warning & maintenance computer 40%
 - Major increase in productivity

<table>
<thead>
<tr>
<th>Computer Aided Specifications</th>
<th>A310 (70')</th>
<th>A320 (80')</th>
<th>A340 (90')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of digital units</td>
<td>77</td>
<td>102</td>
<td>115</td>
</tr>
<tr>
<td>Volume of on-board software in MB</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Errors found per 100 KB</td>
<td>A few hundred</td>
<td>A few dozen</td>
<td>Less than 10</td>
</tr>
</tbody>
</table>
Esterel Summary

- Reactive synchronous language
- Control flow oriented
- Imperative syntax
- Synchrony assumption useful for safety critical embedded systems
 - Convert timing relations to causal ordering
 - Used in verification
 - e.g. TI, Airbus
Models of Computation

- State Machine Models
 - FSM, StateCharts, SDL, CFSM
- Petri nets
- Communicating Processes
 - Kahn processes, Communicating Sequential Processes
- Ada
- Dataflow models
 - DFG, SDFG
- Discrete Event Systems
 - VHDL, Verilog, SystemC, SpecC
- HW Models
- Synchronous reactive languages
 - Cycle based models, Esterel, Lustre
- Unified Modeling Language (UML)
UML (Unified modeling language)
UML - StateCharts
UML – Extended Petri Nets

Diagram:
- Activity: Begin
- Control Flow: Fork of control
- Conditional thread: Submit specification draft
- Join of control: Evaluate initial submissions
- Input value: Specification [initial proposal]
- Object Flow: Collaborate with competitive submitters
- Join and fork of control: Evaluate final submissions
- Guard: [if YES] [if NO]
- Branch: Specification [adopted]
- Revise specification

Tajana Simunic Rosing
UML Summary

- State machine diagram (StateChart-like)
- Activity diagram (extended Petri nets)
- Deployment diagram (exec. arch.)
- Use case diagram
- Package diagram (hierarchy)
- Class diagrams
- Timing diagrams (UML 2.0), UML for real-time
Models and Languages Summary

• Multiple models and languages are essential for high-level design
 – Managing complexity by abstraction
 – Formality ensures refinement correctness
 – Model choice depends on
 • Class of applications
 • Required operations (synthesis, scheduling, ...)

• Multiple MOCs can co-exist during all phases of design
 – Specification
 – Architectural mapping and simulation
 – Synthesis, code generation, scheduling
 – Detailed design and implementation
 – Co-simulation
Sources and References

• Alberto Sangiovanni-Vincentelli @ UCB
• Mani Srivastava @ UCLA
• Rajesh Gupta @ UCSD
• Nikil Dutt @ UCI