Communication Protocols

• Layering
 – Lower levels provide services to higher level
 – Easier to design
 – Physical layer
 • Lowest level in hierarchy
 • Medium to carry data from one actor (device or node) to another

• Protocols: real-time or best effort
 – Parallel
 – Serial
 – Wireless
Parallel communication

• Multiple data, control, and power wires
 – One bit per wire

• High data throughput with short distances

• Typically used when connecting devices on same IC or same circuit board
 – Bus must be kept short
 • long parallel wires result in high capacitance values which requires more time to charge/discharge
 • Data misalignment between wires increases as length increases

• Higher cost, bulky
Parallel Protocols: PCI Bus

- PCI Bus (Peripheral Component Interconnect)
 - High performance bus designed by Intel in the 1990’s
 - Interconnects CPUs, expansion boards, memory
 - Data transfer rates up to 1GBs for 64 bit addresses
 - Synchronous bus architecture
 - Multiplexed data/address lines

- PCI express
 - Serial, point-to-point protocol

Source: http://computer.howstuffworks.com
Parallel Protocols: ARM Bus

• ARM Bus
 – Designed and used internally by ARM Corporation
 – Interfaces with ARM line of processors
 – Many IC design companies have own bus protocol
 – Data transfer rate is a function of clock speed
 – 32-bit addressing
Serial Communication

- Single data wire – transmit one bit at a time
- Higher data throughput with long distances
 - Less average capacitance, so more bits per unit of time
- Complex protocol and interfacing logic
 - Sender needs to decompose word into bits
 - Receiver needs to recompose bits into word
 - Control signals often on the same wire -> increasing protocol complexity
Serial Communication

- Parameters:
 - Baud (bit) rate.
 - Number of bits per character.
 - Parity/no parity.
 - Even/odd parity.
 - Length of stop bit (1, 1.5, 2 bits).
Serial Protocol: 8251 UART

- Universal asynchronous receiver transmitter
- Takes parallel data and transmits serially at up to max 450 Kbps
- 8251 chip functions are integrated into standard PC interface chip.
Serial Protocols: I^2C

- I^2C (Inter-IC)
 - Two-wire serial bus protocol developed by Philips Semiconductors ~20 years ago
 - Enables peripheral ICs to communicate using simple communication hardware
 - appropriate for peripherals where simplicity and low manufacturing cost are more important than speed
 - Normal mode: 100 Kbps with 7-bit address
 - Fast mode: 3.4 Mbpbs with 10-bit address
 - Common devices capable of interfacing to I^2C bus:
 - EPROMS, Flash, and some RAM memory, real-time clocks, watchdog timers, and microcontrollers
 - Raspberry PI 2
Serial Protocols: USB

- **USB (Universal Serial Bus)**
 - Easier connection between PC and peripherals
 - USB 1.1 has 2 data rates:
 - 12 Mbps for increased bandwidth devices
 - 1.5 Mbps for lower-speed devices (joysticks, game pads)
 - USB 2.0 runs at 480 Mbps; USB 3.0 up to 5 Gbps
 - Tiered star topology can be used
 - One USB device (hub) connected to PC
 - Up to 127 USB devices can be connected to hub
 - USB host controller
 - Manages and controls bandwidth and driver software required by each peripheral
 - Dynamically allocates power downstream according to devices connected/disconnected
PCI Express (PCIe)

- Serial, point-to-point protocol
- Bandwidth is very scalable: 1x-16x links
- Max 6.4GBps in either direction on x16
- Switches for connecting different devices

Source: http://computer.howstuffworks.com
Real-Time Communication & Protocol Examples
Real-time Comm. Requirements

- Real-time behavior
- Efficient, economical
 (e.g. centralized power supply)
- Appropriate bandwidth and communication delay
- Robustness
- Fault tolerance
- Maintainability
- Diagnosability
- Security
- Safety
Real-time behavior

• Field bus:
 – A family of industrial computer network protocols used for real-time distributed control

• Carrier-sense multiple-access/collision-detection (CSMA/CD)
 – E.g. Ethernet: no timing guarantees

• Alternatives:
 – Token rings, token busses
 – Carrier-sense multiple-access/collision-avoidance: CSMA/CA
 • Each partner gets an ID (priority). After each bus transfer, all partners try setting their ID on the bus; partners detecting higher ID disconnect themselves from the bus. Highest priority partner gets guaranteed response time; others only if they are given a chance.
Event vs. time triggered

• Event Triggered (ET):
 – Computation/communication triggered by an external event
 – Events are primarily generated by changes in the environment
 – Efficient — only do things when they need to be done; rest and save energy/cpu time/bandwidth
 – High peak-load if multiple events happen at once
 – Hard to analyze due to asynchronous nature of events

• Time Triggered (TT):
 – Computation/communication triggered by system clock
 – Events happen according to a fixed schedule:
 • Inefficient — does things periodically, whether needed or not
 – Enhanced analizability due to easily characterizable load, predictable interaction sequences, bus use, etc.
Time division multiple access

• Each assigned a fixed time slot:

 - Master sends sync
 - Some waiting time
 - Each slave transmits in its time slot
 - Variations (truncating unused slots, several slots per slave) exist

http://www.ece.cmu.edu/~koopman/jtdma/jtdma.html#classical
Advantages of TDMA-busses over priority-driven schemes

- Can provide QoS guarantees
- TDMA resources support temporal composability, by separating resource access of different subsystems
- TDMA resources have a very deterministic timing behavior
- Can be made fault tolerant
- Support for error detection
- Support for error contention
 - a faulty subsystem does not affect the correct behavior of the remaining system

Field busses: Profibus

- More powerful and expensive than sensor interfaces
- Mostly serial; apps transmit a few bytes at a time
- Example: Process Field Bus (Profibus)
 - Designed for factory and process automation.
 - Focus on **safety**; comprehensive protocol mechanisms.
 - 20% market share for field busses.
 - **Token** passing.
 - ≤ 93.75 kbit/s (1200 m); 1500 kbits/s (200m); 12 Mbit/s (100m)
 - Integration with Ethernet via Profinet.
Controller area network (CAN)

– Designed by Bosch and Intel in 1981;
– Key concept:
 • every device can be connected by a single set of wires, and every device that is connected can freely exchange data with any other device
– Originally designed for cars; now used also for:
 • elevator controllers, copiers, telescopes, production-line control systems, and medical instruments
– Binary countdown arbitration (CSMA/CD)
 • Start from MSB, transmit each bit of priority
 • Highest priority wins
– Throughput: 10kbit/s - 1 Mbit/s
– Low and high-priority signals
 • maximum latency of 134 μs for high priority

www.can.bosch.com
Aircraft communication systems

– **Information exchange**
 - **information**: many bytes of data: e.g. digital map, flight plan, etc.
 - **exchange**: a response is expected, at min acknowledgment
 - higher speed data link needed

– **Control platform**: sampling and data transmission
 - **data**: digital value of an analog parameter: e.g. speed; height etc.
 - No response is expected, but:
 - **Time, integrity and availability** are the key drivers.
 - The stability of the flight relies on this transmission
 - **Aeronautical response**: ARINC 429 protocol
ARINC 429 overview

• Developed by Aeronautical Radio, Incorporated (ARINC)
• Commonly used standard for the aircraft
• Electrical and data format standard for a 2-wire serial bus with one sender and many listeners.
• Each data is individually identified (by a label) and sent
Information system requirements

- Ensure that the information is transmitted without any error.
 - Data needs to be acknowledged
 - Messages can be sent again in case of error
- Past aircraft uses A429 but added acknowledgement.
ARINC 629

- Multi-transmitter protocol where many units share the same bus; originally designed for Boeing 777.

- Based on "waiting room" protocol:
 - Each node is assigned a unique number of mini slots that must elapse with silence on the channel before the data transmission begins

- Three (groups of) time-out parameters:
 - SG — synchronization gap controlling access to the waiting room
 - TGi — terminal gap, the personal time-out of node i
 - TI — transmit interval preventing monopolization of channel
 - TI > SG > max{TGi}

![Diagram of ARINC 629 parameters]
TTP (Time-Triggered Protocol)

TTP – more than just a protocol
- Network protocol
- Operating system scheduling philosophy
- Fault tolerance approach

Time-Triggered approach
- Stable time base
- Simple to implement
- Cyclic schedules
TTP versions

• TTP/A (Automotive Class A = soft real time)
 – A scaled-down version of TTP
 – A cheaper master/slave variant
 • Distributed master slave is expensive

• TTP/C (Automotive Class C = hard real time)
 – A full version of TTP
 – A fault-tolerant distributed variant
Protocol Layer in TTP/A

1. Application
2. Mapping of TTP-messages to application relevant data elements
3. Communication Network Interface
4. Message Checking and Error Detection
5. Serial Communication Interface
6. Bus Driver
7. Transmission Medium
TTP/A: Polling

• **Operation**
 – Master polls the other nodes (slaves)
 – Non-master nodes transmit messages when they are polled
 – Inter-slave communication through the master
Polling Tradeoffs

• **Advantages**
 – Simple protocol to implement
 – Historically very popular
 – Bounded latency for real-time applications

• **Disadvantages**
 – Single point of failure from centralized master
 – Polling consumes bandwidth
 – Network size is fixed during installation (or master must discover nodes during reconfiguration)
TTP/C

• TTP/C
 – A time-triggered communication protocol for safety-critical (fault-tolerant) distributed real-time control systems
 – Based on a TDMA (Time Division Multiple Access) media access strategy
 • has clock synchronization
 – Fail Silence
 • A subsystem is fail-silent if it either produces correct results or no results at all, i.e., it is quiet in case it cannot deliver the correct service
TTP/C Protocol Layer

<table>
<thead>
<tr>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Layer</td>
<td>Application software in host</td>
</tr>
<tr>
<td>FTU CNI</td>
<td>Fault tolerance unit Communication Network Interface (CNI)</td>
</tr>
<tr>
<td>FTU Layer</td>
<td>Group two or more nodes into FTUs</td>
</tr>
<tr>
<td>Basic CNI</td>
<td>Provide the mechanisms for the cold start of a TTP/C cluster</td>
</tr>
<tr>
<td>RM Layer</td>
<td>Store the data fields of the received frames</td>
</tr>
<tr>
<td>SRU Layer</td>
<td>Provide the means to exchange frames between the nodes</td>
</tr>
<tr>
<td>Data Link/Physical Layer</td>
<td></td>
</tr>
</tbody>
</table>

- **FTU CNI**
 - Fault tolerance unit Communication Network Interface (CNI)

- **FTU Layer**
 - Group two or more nodes into FTUs

- **RM Layer**
 - Provide the mechanisms for the cold start of a TTP/C cluster

- **SRU Layer**
 - Store the data fields of the received frames

- **Data Link/Physical Layer**
 - Provide the means to exchange frames between the nodes
Structure of TTP/C System

- **CNI**: Communication Network Interface
- **TTP**: TTP Communication Controller
- **FTU**: Fault Tolerant Unit
- Controller to run protocol
- DPRAM (dual ported RAM)
 - Used for memory-mapped network interface
- BG (Bus Guard)
 - Hardware watchdog to ensure “fail silent”
- HW must use highly accurate time sources
 - Even dual redundant crystal oscillators are used for Boeing 777
(a) Two active nodes, two shadow nodes
(b) Triple modular Redundancy: three active nodes with one shadow
(c) Two active nodes without a shadow node
Cycle in TTP/C

- **TDMA Cycle**
 - One FTU sends results twice
 - Then next FTU sends some results
 - And so on, until back to the next message from the first FTU

- **Cluster Cycle**
 - Cluster cycle involves scheduling all messages and tasks
TTP/C Frame

- I-Frames used for initialization
- N-Frames used for normal messages
Pros and Cons of TTP

• Advantages
 – Simple protocol to implement
 – Deterministic response time
 – No wasted time for master polling messages

• Disadvantages
 – Wasted bandwidth when some nodes are idle
 – Stable clocks
 – Fixed network size during installation
TTP/A vs. TTP/C

<table>
<thead>
<tr>
<th>Service</th>
<th>TTP/A</th>
<th>TTP/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Synchronization</td>
<td>Central Multimaster</td>
<td>Distributed, Fault-Tolerant</td>
</tr>
<tr>
<td>Mode Switches</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Communication Error Detection</td>
<td>Parity</td>
<td>16/24 bit CRC</td>
</tr>
<tr>
<td>Membership Service</td>
<td>simple</td>
<td>full</td>
</tr>
<tr>
<td>External Clock Synchronization</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Time-Redundant Transmission</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Duplex Nodes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Duplex Channels</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Redundancy Management</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Shadow Node</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
FlexRay

- Robust, scalable, deterministic, and fault-tolerant digital serial bus system designed for use in automotive applications
- Developed by consortium: BMW, Ford, Bosch, Daimler-Chrysler, etc.;
 - Specified in SDL; finalized in 2009
- Built as extension to TTP and Byteflight protocols.
 - Improved error tolerance and time-determinism
 - Meets requirements with transfer rates >> CAN
 - initially targeted for ~ 10Mbit/sec;
 - design allows much higher data rates
- TDMA (Time Division Multiple Access) protocol:
 Fixed time slot with exclusive access to the bus
- Cycle subdivided into a static and a dynamic segment.
TDMA in FlexRay

- Exclusive bus access enabled for short time in each case.
 Dynamic segment for transmission of variable length information.
 Fixed priorities in dynamic segment: Minislots for each potential sender.
 Bandwidth used only when it is actually needed.

http://www.tzm.de/FlexRay/FlexRay_Introduction.html
Structure of Flexray networks

Bus Guardian (BG) protects the system against failing processors by gating access to Bus Driver (BD)
Comparison of real-time protocols

FIP = Flexible time triggered protocol; statically scheduled with centralized arbitration
LON = for building automation, uses TDMA with CSMA/CA and dynamically varies the number of slots per device for each schedule
Wireless communication

• Infrared (IR)
 – Frequencies just below visible light spectrum
 – Diode emits infrared light to generate signal
 – Infrared transistor detects signal
 – Cheap to build but need line of sight, limited range
 – Data transfer rate of 9.6 kbps and 4 Mbps

• Radio frequency (RF)
 – Electromagnetic wave frequencies in radio spectrum
 – Analog circuitry and antenna needed on both sides
 – Line of sight not needed, transmitter power determines range
• Use of EM field to transfer data, for identifying and tracking tags attached to objects; no need for line of sight

• Active vs. passive tags
 – Active transmits ID, they are low power (~10-100uA) but higher cost ($10-$200/unit retail)
 – Passive can be read by RF - no intrinsic power consumption (powered by EM induction) and cheaper ($0.20-0.40)

• Readers
 – $100+ to $1000s, range from read and report to smart tracking, etc.

• Using RFID for real-time location systems (RTLS)
 – Only active tags work with range 100m+ in line of sight, or 1-20m obstructed
 – Battery - up to years on a single charge @ <1Hz transmission rate
 – Location accuracy as close as 30cm with reader presence
Bluetooth, BLE, Zigbee

- **Bluetooth**
 - IEEE 802.15.1
 - Developed and licensed by the Bluetooth Special Interest Group (SIG)

- **BLE**
 - Adopted into Bluetooth specification
 - *Bluetooth Low Energy Technology*

- **ZigBee**
 - IEEE 802.15.4
 - Maintained and published by the ZigBee Alliance
Side By Side Comparison

<table>
<thead>
<tr>
<th></th>
<th>Bluetooth</th>
<th>BLE</th>
<th>ZigBee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>2.4GHz</td>
<td>2.4GHz</td>
<td>2.4GHz, 868MHz, 915MHz</td>
</tr>
<tr>
<td>Antenna/HW</td>
<td>Shared</td>
<td></td>
<td>Independent</td>
</tr>
<tr>
<td>Power</td>
<td>100 mW</td>
<td>~10 mW</td>
<td>30 mW</td>
</tr>
<tr>
<td>Battery Life</td>
<td>Days – months</td>
<td>1-2 years</td>
<td>6 months – 2 yrs</td>
</tr>
<tr>
<td>Range</td>
<td>10-30 m</td>
<td>10 m</td>
<td>10-75 m</td>
</tr>
<tr>
<td>Data Rate</td>
<td>1-3 Mbps</td>
<td>1 Mbps</td>
<td>25-250 Kbps</td>
</tr>
<tr>
<td>Network Topologies</td>
<td>Ad hoc, point to point, star</td>
<td>Ad hoc, point to point, star</td>
<td>Mesh, ad hoc, star</td>
</tr>
<tr>
<td>Time to Wake and Transmit</td>
<td>3s</td>
<td>3ms</td>
<td>15ms</td>
</tr>
<tr>
<td>Security</td>
<td>128-bit encryption</td>
<td>128-bit encryption</td>
<td>128-bit encryption</td>
</tr>
</tbody>
</table>
Wireless Protocols: 802.11

- **IEEE 802.11**
 - Standard for wireless LANs
 - Specifies parameters for PHY and MAC layers of network
 - **PHY layer**
 - handles transmission of data between nodes
 - data transfer rates up to 600 Mbit/s for 802.11n
 - operates in 2.4 / 5 GHz frequency band (RF)
 - **MAC layer**
 - medium access control layer
 - protocol responsible for maintaining order in shared medium
 - collision avoidance/detection
Summary

• Interfacing: on & off chip
• Real-time IO
 – Profibus
 – CAN
 – ARINC
 – TTP/A & TTP/C
 – FlexRey
• Wireless
 – IR, BLE, ZigBee, RFID, 802.11