Memory in Embedded Systems

Tajana Simunic Rosing
Department of Computer Science and Engineering
University of California, San Diego.
Hardware platform architecture
Traditional Memory Hierarchies

- **On-chip memory (SRAM)**
 - Latency: 1~30 (Cycles)

- **Off-chip memory (DRAM)**
 - Latency: 100~300

- **Solid State Disk (Flash Memory)**
 - Latency: 25000~2000000

- **Secondary Storage (HDD)**
 - Latency: >5000000
Embedded memory hierarchy

- **Registers**
 - Very fast, next to ALU, power hungry

- **Cache**
 - Small, expensive, fast memory stores a copy of likely accessed parts
 - L1, L2, L3

- **Predictability**
 - Scratchpad memory

- **Main memory**
 - Large, inexpensive, slower

- **Permanence**
 - Non-volatile memories
Caches and CPUs

- Servers: L1, L2 & L3 cache on chip
- Embedded: L1, L2 on chip

Server

Raspberry Pi 2

Figure 2.2. Intel® Xeon® Processor 7500 Series Block Diagram

ARM® Cortex®-A7

ARM CoreSight™ Multicore Debug and Trace

ARMv7 32b CPU
Virtual 40b PA

8-64k I-Cache
8-64k D-Cache

NeON™
Data Engine
Floating Point Unit

Core 1

128-bit AMBA® ACE Coherent Bus Interface
Cache

- Designed with SRAM, Usually on same chip as processor
- Cache operation:
 - Request for main memory access (read or write)
 - First, check cache for copy
 - cache hit
 - cache miss
- Design choices
 - cache mapping
 - Direct - each memory location maps onto exactly one cache entry
 - Fully associative – anywhere in memory, never implemented
 - Set-associative - each memory location can go into one of n set
 - write techniques
 - Write-through - write to main memory at each update
 - Write-back – write only when “dirty” block replaced
 - replacement policies
 - Random
 - LRU: least-recently used
 - FIFO: first-in-first-out
• Most important parameters in terms of performance:
 – Total size of cache (data and control info – tags etc)
 – Degree of associativity
 – Data block size
• Larger caches -> lower miss rates, higher access cost
 – Average memory access time (h1=L1 hit rate, h2=L2 hit rate)
 • \(t_{av} = h_1 t_{L1} + (h_2-h_1)t_{L2} + (1- h_2-h_1)t_{main} \)
 – e.g., if miss cost = 20
 • 2 Kbyte: miss rate = 20%, hit cost = 2 cycles, access 5.6 cycles
 • 4 Kbyte: miss rate = 10%, hit cost = 3 cycles, access 4.7 cycles
 • 8 Kbyte: miss rate = 8%, hit cost = 4 cycles, access 4.8 cycles
• Your project:
 – Cache miss rate affects execution time – note the relationship between cache sizes and the execution time
 – Study the relationship between cache miss rate and DVFS
Predictability

• Embedded systems are often real-time:
 – Have to guarantee meeting **timing constraints**.

• **Pre run-time scheduling** - *predictability*

 🔄 Time-triggered, statically scheduled operating systems

 🔄 Predictable cache design?
Scratch pad memories (SPM)

Hierarchy

main

SPM

processor

Example

ARM7TDMI well-known for low power consumption

Address

0

scratch pad memory

no tag memory

FFF..
Why not just use a cache?

Worst case execution time (WCET) may be large

[P. Marwedel et al., ASPDAC, 2004]
ARM memory hierarchy

Tightly coupled memory = Scratchpad!
Memory management unit (MMU)

Memory management unit translates addresses:

- **Duties of MMU**
 - Handles DRAM refresh, bus interface & arbitration
 - Takes care of memory sharing among multiple CPUs
 - Translates logic memory addresses from processor to physical memory addresses of DRAM

- Modern CPUs often come with MMU built-in
Address translation

- Mapping logical to physical addresses
- Two basic schemes:
 - **Segmented**
 - memory footprint can change dynamically
 - usually only a few segments per process; e.g. data and stack
 - **Paged**
 - size preassigned
 - can be combined (x86)

<table>
<thead>
<tr>
<th>SEGMENTATION</th>
<th>PAGING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involves programmer</td>
<td>Transparent to programmer</td>
</tr>
<tr>
<td>Separate compiling</td>
<td>No separate compiling</td>
</tr>
<tr>
<td>Separate protection</td>
<td>No separate protection</td>
</tr>
<tr>
<td>Shared</td>
<td>No sharing</td>
</tr>
</tbody>
</table>
ARM memory management

• Memory region types:
 – section: 1 MB block
 – large (64KB) & small (4KB) pages

• Address is marked as section or page-mapped

• Two-level translation scheme
ARM address translation

Translation table base register

1st level table
- descriptor

2nd level table
- descriptor

1st index 2nd index offset

concatenate

concatenate

physical address
Volatile Memory

• Register file
 – Fastest
 – But biggest size – built from D-FFs

• SRAM: Static RAM
 – Memory cell uses flip-flop to store bit
 – Requires 6 transistors
 – Holds data as long as power supplied

• DRAM: Dynamic RAM
 – Memory cell uses MOS transistor and capacitor to store a bit
 – More compact than SRAM
 – “Refresh” required due to capacitor leak
 • word’s cells refreshed when read
 – Typical refresh rate 15.625 microsec.
 – Slower to access than SRAM
RAM organization

- Stores large number of bits
 - \(m \times n \): \(m \) words of \(n \) bits each
 - \(k = \log_2(m) \) address input signals
 - or \(m = 2^k \) words
 - e.g., 4,096 x 8 memory:
 - 32,768 bits
 - 12 address input signals
 - 8 input/output data signals
- Memory access
 - \(r/w \): selects read or write
 - enable: read or write only when asserted
 - multiport: multiple accesses to different locations simultaneously
Raspberry Pi2 – Memory Architecture

- Broadcom BCM2836 SoC
 - CPU: Quad-core Cortex-A7: L1 and L2 cache
 - GPU: VideoCore IV® Processor: exclusive memory system
 - Main Memory: 1GB RAM: Shared by CPU and GPU
Cortex-A7 Memory: L1 Cache

- 32KB L1 Cache
 - Instruction Cache (I-Cache)
 - 32-bytes cache line
 - 2-way set-associative
 - Data Cache (D-Cache)
 - 64-bytes cache line
 - 4-way set-associative
 - Pseudo random cache replacement

- Data Cache Unit (DCU): Contains a controller for MOESI protocol in processor
 - **M** (Modified): The line is only in this cache and is dirty.
 - **O** (Owned): The line is possibly in more than one cache and is dirty.
 - **E** (Exclusive): The line is only in this cache and is clean.
 - **S** (Shared): The line is possibly in more than one cache and is clean
 - **I** (Invalid): The line is not in this cache.
Cortex-A7 Memory: Snoop Control Unit

- **Cache coherence:**
 Consistency of shared data that can be stored in multiple caches

- **Snoop Control Unit (SCU):**
 Cache coherence mechanism between L1 D-Cache and L2 Cache
 - Keep track of allocated data in each processor’s line
 - When a write is observed at a processor, invalidate the cache line of other processors
 - Broadcast mechanism is used.

- **Pros:** faster if enough bandwidth is available
- **Cons:** not scalable due to the broadcast overhead on buses
VideoCore 4 (GPU) Memory

- Specialized to accelerate 3D/multimedia data

- Vertex Pipe Memory (VPM):
 - A type of cache, it is shared & system-wide
 - Performs DMA from main memory to read/write vertex data

- L2 Cache: shared by all slices

- Per-slice memory
 - Icache: instruction cache
 - Uniforms Cache: Stores a stream of data
 - Texture and Memory Lookup Unit (TMU):
 - Stores general-purpose data and textures
 - FIFO-based texture lookup
Raspberry Pi2- Main Memory (RAM)

- Divided in ARM Cortex-7 and VideoCore 4 components
 - Partially shared (e.g. frame buffer)

- Kernel is loaded from 0x8000 (32KB)

- Local peripherals:
 Reserved memory area for
 - ARM timer: 64-bit timing signal
 - IRQs (Interrupt Requests) to cores
 - Mailbox (part of local peripherals) memory area to facilitate communication between ARM and VideoCore
 1. Write data to the mailbox
 2. Issue special Interrupts to either ARM core or VideoCore
Raspberry Pi2-MMU

- **Cortex-A7: Extended VMSAv7 MMU**
 - ARMv7-A virtual memory system architecture
 - Security extension
 - Virtualization extension
 - Large physical address extension

- **Uses 2 Level TLBs**
 - **L1 MMU**
 - 2 micro TLBs: I-cache (IuTLB) and D-cache (DuTLB)
 - 10 entry full-associative
 - **L2 MMU**
 - A unified TLB
 - 256 entry 2-way set-assoc.
Non-volatile memory

• A new class of data storage/memory devices
• Emerging NVMs have exciting features:
 – Non-volatile like Flash (~ 10 years)
 – Fast access times (~ SRAM)
 – High density (~ DRAM)
• NVM *blurs the distinction* between
 – MEMORY (*fast, expensive, volatile*) and
 – STORAGE (*slow, cheap, non-volatile*)
• Key issues:
 – Slow writes, low endurance, costly and complex manufacturing
Older NVMs

- **Mask or fuse programmed ROM**
- **Erasable Programmable ROM (EPROM)**
 - Uses “floating-gate transistor” in each cell
 - Programmer uses higher-than-normal voltage so electrons *tunnel* into the gate
 - Electrons become trapped in the gate
 - Only done for cells that should store 0
 - Other cells will be 1
 - To erase, shine ultraviolet light onto chip
 - Gives trapped electrons energy to escape
 - Requires chip package to have window
- **Electronically-Erasable Programmable ROM (EEPROM)**
 - Erasing one word at a time *electronically*
- **Flash memory**
 - Like EEPROM, but large blocks of words can be erased *simultaneously*
- **EEPROM & FLASH are in-system programmable**
STT-RAM: Spin-Transfer Torque RAM

- The spin torque direction of electrons to flip a bit in a magnetic tunneling junction (MTJ)

Advantage:
- High endurance

Disadvantages:
- *Write energy:* High amount of current needed to reorient the magnetization for most commercial applications.
- *Write latency:* Low ON/OFF resistance ratio (~2); Low
- *Asymmetric write:* Writing “1s” needs much more time and energy than writing zero

(a) The Structure of MTJ
(b) Parallel: bit 0 (low Resistance)
(c) Anti-Parallel: bit 1 (high Resistance)
Domain Wall Memory (DWM)

- Similar to STT-RAM structure
- **Advantage:**
 - needs only one tunneling barrier and fixed layer → area savings
- **Disadvantages:**
 - complexity of design, read/write delay due to sequential access
Shift-based DWM

- Writes by shifting data of one of the two fixed layers with the desirable direction comp
- **Advantage**: Faster writes than a traditional DWM
- **Disadvantage**: cost and manufacturing complexity

(a) 1-bit DWM Fast
(b) Multi-bit DWM Area efficient, but needs extra latency for shifting
ReRAM: Resistive RAM

- Two types: access-based and crossbar ReRAM
- Access-based transistor (1T-1R)
 - A dielectric, which is normally insulating, can conduct when exposed to sufficiently high voltage
- Crossbar (1T-nR)
 - Resistance on top of the chip, and only transistor in silicon (3D arch)
 - Highly scalable
 - Very low energy consumption

Working mechanism of ReRAM
ReRAM: Resistive RAM

• Advantages:
 – Potentially a strong candidate to replace with NAND flash, approximate computing, neuromorphic computing
 – Very fast for both reads and writes

• Disadvantage:
 – Limited endurance

[Diagram of Crossbar ReRAM]
PCM: Phase Change Memory

Phase Change Memory (PCM)
- Flips a bit by changing the state of material
- Crystalline (SET) and amorphous (RESET) phase

Advantages:
- better scalability than other emerging technologies.
- Good candidate for main memory replacement

Disadvantages:
- Slow in write (non-symmetric write operation)
- Low endurance \((10^7) \)
Active vs Passive Power

- The blue area marks active power in the power equations
- The red area marks passive power in the power equations
 - Passive power is unproductive. It just causes heat
 - For memories it is leakage and refresh power, which is typically smaller than maximum active power
 - For disks it is keeping the motor spinning and the standby power of the electronics, which is typically larger than the maximum active power
 - For PCM it is the leakage and small standby power and is typically much smaller than the maximum active power.

\[
P_{DRAM} = V_{dd} I_{\text{leak}} + V_{dd} I_{\text{refresh}} + \alpha CV_{dd}^2 f
\]

\[
P_{Disk} = \kappa d^{4.6} r^{2.8} + I_{i\&c} V + \alpha I_{s\&t} V
\]

\[
P_{PCM} = I_{\text{standby}} V_{dd} + \alpha I_{\text{active}} V_{dd}
\]

\(\alpha\) is the portion of time that the device is active and productive
\(\kappa\) is the normalized power of the disk motor
NVRAM Comparison

The diagram illustrates the comparison of various NVM technologies based on access time (in nanoseconds) and VDDmin (in volts). The x-axis represents VDDmin, while the y-axis shows access time.

- **Emerging NVM** includes technologies like MRAM, PCM, and ReRAM.
- **Flash** is positioned at the top right, indicating high VDDmin and power-off data storage capabilities.
- **Low VDDmin** technologies like SRAM and DRAM are located at the bottom left, offering high speed operation.

The diagram also highlights the trade-offs between access time and VDDmin, with technologies optimizing for different performance criteria.
NVMs Comparison cont.

- STT-RAM: SRAM **cache** replacement
- PCRAM: DRAM **main memory** replacement
- ReRAM: **NAND Flash**, Logic-in memory, computation building block

<table>
<thead>
<tr>
<th>Features</th>
<th>SRAM</th>
<th>eDRAM</th>
<th>STT-RAM</th>
<th>PCRAM</th>
<th>ReRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Very high</td>
<td>Very high</td>
</tr>
<tr>
<td>Speed</td>
<td>Very Fast</td>
<td>Fast</td>
<td>Fast for read; slow for write</td>
<td>Slow for read; very slow for write</td>
<td>Slow for read/write</td>
</tr>
<tr>
<td>Dynamic Power</td>
<td>Low</td>
<td>Medium</td>
<td>Low for read; very high for write</td>
<td>Medium for read; high for write</td>
<td>Medium for read; high for write</td>
</tr>
<tr>
<td>Leakage Power</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Non-volatility</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Summary

• Memory hierarchy
 – Needs: speed, low power, predictable

• Cache design
 – Mapping, replacement & write policies

• Memory types
 – ROM vs RAM, types of ROM/RAM

• NVM
 – Many new technologies that are still maturing
Sources and References

Phase-change RAM

Bit-line

Word-line

Access device (transistor, diode)

PCRAM “programmable resistor”

Voltage versus temperature

“RESET” pulse

“SET” pulse

Potential headache:
High power/current
→ affects scaling!

Potential headache:
If crystallization is slow
→ affects performance!