<table>
<thead>
<tr>
<th>Lecture</th>
<th>Instructor</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tiefenbruck</td>
<td>MWF 9-9:50am</td>
<td>Center 212</td>
</tr>
<tr>
<td>B</td>
<td>Jones</td>
<td>MWF 2-2:50pm</td>
<td>Center 214</td>
</tr>
<tr>
<td>C</td>
<td>Tiefenbruck</td>
<td>MWF 11-11:50am</td>
<td>Center 212</td>
</tr>
</tbody>
</table>

http://cseweb.ucsd.edu/classes/wi16/cse21-abc/

January 15, 2016
Today’s Plan

Analyzing algorithms that solve other problems (besides sorting and searching)

Designing better algorithms

• pre-processing
• re-use of computation
Summing Triples: WHAT

Given a list of real numbers

\[a_1, a_2, \ldots, a_n \]

look for three indices, i, j, k (each between 1 and n) such that

\[a_i + a_j = a_k \]

Does the list 3,6,5,7,8 have a summing triple?

A. Yes: 1,2,3
B. Yes: 1,3,5
C. No
Given a list of real numbers

\[a_1, a_2, \ldots, a_n \]

look for three indices, i, j, k (each between 1 and n) such that

\[a_i + a_j = a_k \]

Design an algorithm to look for summing triples
Summing Triples: HOW (1)

\[SumTriples_1(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\text{for } i := 1 \text{ to } n \\
\quad \text{for } j := 1 \text{ to } n \\
\quad \quad \text{for } k := 1 \text{ to } n \\
\quad \quad \quad \text{if } a_i + a_j = a_k \text{ then return true} \\
\text{return false}
\]

What's the order of the runtime of this algorithm?
A. \(O(1) \)
B. \(O(n) \)
C. \(O(n^2) \)
D. \(O(n^3) \)
E. None of the above
Summing Triples: HOW (1)

\[\text{SumTriples1}(a_1, \ldots, a_n : \text{real numbers}) \]

\[
 \text{for } i := 1 \text{ to } n \\
 \quad \text{for } j := 1 \text{ to } n \\
 \quad \quad \text{for } k := 1 \text{ to } n \\
 \quad \quad \quad \text{if } a_i + a_j = a_k \text{ then return } true \\
\]

\text{return } false

Improvements??
Summing Triples: HOW (2)

\[\text{SumTriples}(a_1, \ldots, a_n : \text{real numbers})\]

\[
\begin{align*}
&\text{for } i := 1 \text{ to } n \\
&\quad \text{for } j := 1 \text{ to } n \\
&\quad \quad \text{for } k := 1 \text{ to } n \\
&\quad \quad \quad \text{if } a_i + a_j = a_k \text{ then return true} \\
&\text{return false}
\end{align*}
\]

Eliminate redundancy
Summing Triples: HOW (2)

$SumTriples2(a_1, \ldots, a_n : \text{real numbers})$

for $i := 1$ to n

for $j := i$ to n

for $k := 1$ to n

if $a_i + a_j = a_k$ then return true

return false

What's the order of the runtime of this algorithm?
A. $O(1)$
B. $O(n)$
C. $O(n^2)$
D. $O(n^3)$
E. None of the above
Summing Triples: HOW (2)

$SumTriples2(a_1, \ldots, a_n : \text{real numbers})$

\[
\begin{align*}
\text{for } i & := 1 \text{ to } n \\
\text{for } j & := i \text{ to } n \\
\text{for } k & := 1 \text{ to } n \\
\quad & \text{if } a_i + a_j = a_k \text{ then return } true \\
\text{return } false
\end{align*}
\]
Summing Triples: HOW (3)

Reframing what we did:

\[\text{SumTriples2}(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\begin{align*}
\text{for } i & := 1 \text{ to } n \\
\text{for } j & := i \text{ to } n & \text{For each candidate sum } a_i+a_j, \\
\text{for } k & := 1 \text{ to } n & \text{do linear search to find it} \\
\hspace{1cm} \text{if } a_i + a_j = a_k & \text{ then return } \text{true} \\
\text{return } false
\end{align*}
\]

Improvements??
Summing Triples: HOW (3)

\[\text{SumTriples2}(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\begin{align*}
\text{for } i & := 1 \text{ to } n \\
\text{for } j & := i \text{ to } n \\
\text{for } k & := 1 \text{ to } n \\
\text{if } a_i + a_j = a_k & \text{ then return true} \\
\text{return false}
\end{align*}
\]

For each candidate sum \(a_i + a_j\),

do linear search to find it.

We have a faster search than linear search!
Summing Triples: HOW (3)

\[\text{SumTriples3}(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\text{for } i := 1 \text{ to } n \\
\text{for } j := i \text{ to } n
\]

For each candidate sum \(a_i + a_j \),

\[
\text{if BinarySearch}(a_i + a_j; a_1, \ldots, a_n) \\
\text{then return } \text{true} \\
\text{return } \text{false}
\]

How long would this take?
A. \(O(n^3) \)
B. \(O(n^2) \)
C. \(O(n^2 \log n) \)
D. \(O(n \log n) \)
Summing Triples: HOW (3)

\[\text{SumTriples}_3(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\begin{align*}
\text{for } i & := 1 \text{ to } n \\
\text{for } j & := i \text{ to } n \\
\text{if } \text{BinarySearch}(a_i + a_j; a_1, \ldots, a_n) \\
\text{then return } \text{true} \\
\text{return } \text{false}
\end{align*}
\]

For each candidate sum \(a_i + a_j\),
do binary search to find it

Does this algorithm really work???
Summing Triples: HOW (3)

\[\text{SumTriples}_3(a_1, \ldots, a_n : \text{real numbers}) \]

\[
\begin{align*}
&\text{for } i := 1 \text{ to } n \\
&\text{for } j := i \text{ to } n \\
&\quad \text{if } \text{BinarySearch}(a_i + a_j; a_1, \ldots, a_n) \\
&\quad \quad \text{then return } \text{true} \\
&\text{return } \text{false}
\end{align*}
\]

For each candidate sum \(a_i + a_j\),
do binary search to find it

Does this algorithm really work???
Summing Triples: HOW (4)

SumTriples4(a_1, ..., a_n : real numbers)
MinSort(a_1, ..., a_n)
SumTriples3(a_1, ..., a_n)

This algorithm works! How long does it take?

Preprocessing step

aka SortedSumTriples
Summing Triples: HOW (4)

$$SumTriples4(a_1, \ldots, a_n : \text{real numbers})$$

$$MinSort(a_1, \ldots, a_n) \quad O(n^2)$$

$$SumTriples3(a_1, \ldots, a_n) \quad O(n^2 \log n)$$

Sum is maximum: $O(n^2 \log n)$
Summing Triples: HOW (4)

\[\text{SumTriples4}(a_1, \ldots, a_n : \text{real numbers}) \]

\[\text{MinSort}(a_1, \ldots, a_n) \quad \text{O}(n^2) \]

\[\text{SumTriples3}(a_1, \ldots, a_n) \quad \text{O}(n^2 \log n) \]

Sum is maximum: \(\text{O}(n^2 \log n) \)

Have we made progress? Can we do better?

- \(\text{SumTriples4} \) does better than \(\text{O}(n^3) \).
- Using a faster sort won’t help overall.
- But …. fastest known algorithm: \(\text{O}(n^2) \)
"Tight"?

To know that we've actually made improvements, need to make sure our original analysis was not overly pessimistic.

A **tight** bound for runtime is a function $g(n)$ so that the runtime is in $\Theta(g(n))$.

The big-O class for our algorithm : upper bound.

Now want matching big-Ω : lower bound.
Summing Triples: WHEN (1)

\[\text{SumTriples}1(a_1, \ldots, a_n : \text{real numbers}) \]

\[\text{for } i := 1 \text{ to } n \]
\[\text{for } j := 1 \text{ to } n \]
\[\text{for } k := 1 \text{ to } n \]
\[\text{if } a_i + a_j = a_k \text{ then return true} \]

return false

What's the lower bound order of the worst case runtime of this algorithm?
A. \(\Omega(1) \)
B. \(\Omega(n) \)
C. \(\Omega(n^2) \)
D. \(\Omega(n^3) \)
E. None of the above
Summing Triples: WHEN (1)

\textit{SumTriples1}(a_1, \ldots, a_n : \text{real numbers})

\begin{align*}
&\text{for } i := 1 \text{ to } n \\
&\quad \text{for } j := 1 \text{ to } n \\
&\quad \quad \text{for } k := 1 \text{ to } n \quad \Omega(n) \\
&\quad \quad \quad \text{if } a_i + a_j = a_k \text{ then return } \text{true} \quad \Omega(1) \\
&\text{return } \text{false} \\
\end{align*}

\textit{Strategy: work from the inside out}
Summing Triples: WHEN (2)

\[\text{SumTriples2}(a_1, \ldots, a_n : \text{real numbers}) \]
\[
\text{for } i := 1 \text{ to } n \\
\quad \text{for } j := i \text{ to } n \\
\quad \quad \text{for } k := 1 \text{ to } n \\
\quad \quad \quad \text{if } a_i + a_j = a_k \text{ then return } true \\
\text{return false}
\]

What's the lower bound order of the worst case runtime of this algorithm?

A. \(\Omega(1) \)
B. \(\Omega(n) \)
C. \(\Omega(n^2) \)
D. \(\Omega(n^3) \)
E. None of the above
Summing Triples: WHEN (2)

\[
\text{SumTriples2}(a_1, \ldots, a_n : \text{real numbers})
\]

\[
\text{for } i := 1 \text{ to } n \\
\text{for } j := i \text{ to } n \\
\text{for } k := 1 \text{ to } n \\
\quad \text{if } a_i + a_j = a_k \text{ then return } \text{true}
\]

\text{return } \text{false}

What's the lower bound order of the worst case runtime of this algorithm?

A. \(\Omega(1) \)
B. \(\Omega(n) \)
C. \(\Omega(n^2) \)
D. \(\Omega(n^3) \)
E. None of the above
Observe: in both these examples, the product rule for calculating the nested loop runtime gave us tight upper bounds … is that always the case?
When is the product rule for nested loops tight?

Nested code:

```
while (Guard Condition)
    Body of the Loop,
    May contain other loops, etc.
```

If Guard Condition is $O(1)$ and body of the loop has runtime $O(T_2)$ in the worst case and run at most $O(T_1)$ iterations, then runtime is

$$O(T_1 T_2)$$

But what if many t_k are much better than the worst case?
Intersecting sorted lists: WHAT

Given two lists

\[a_1, a_2, \ldots, a_n \text{ and } b_1, b_2, \ldots, b_n \]

determine if there are indices \(i,j \) such that

\[a_i = b_j \]

Design an algorithm to look for indices of intersection
Intersecting sorted lists: HOW

Given two lists

\[a_1, a_2, \ldots, a_n \text{ and } b_1, b_2, \ldots, b_n \]

determine if there are indices \(i, j \) such that

\[a_i = b_j \]

High-level description:
- Use linear search to see if \(b_1 \) is anywhere in first list, using early abort
- Since \(b_2 > b_1 \), start the search for \(b_2 \) where the search for \(b_1 \) left off
- And in general, start the search for \(b_j \) where the search for \(b_{j-1} \) left off
Intersect($a_1, \ldots, a_n, b_1, \ldots, b_n$)

$i := 1$

for $j := 1$ to n

while ($b_j > a_i$ and $i \leq n$)

$i := i + 1$

if $i > n$ then return false

if $b_j = a_i$ then return true

return false
Intersecting sorted lists: WHY

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

1. \(i := 1 \)
2. \textbf{for} \(j := 1 \) \textbf{to} \(n \)
 1. \textbf{while} \((b_j > a_i \text{ and } i \leq n)\)
 1. \(i := i + 1 \)
 2. \textbf{if} \(i > n \) \textbf{then return} \(\text{false} \)
 3. \textbf{if} \(b_j = a_i \) \textbf{then return} \(\text{true} \)
3. \textbf{return} \(\text{false} \)

To practice: trace examples & generalize argument for correctness
Intersecting sorted lists: WHEN

Using product rule

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[i := 1 \]

\[\text{for } j := 1 \text{ to } n \]

\[\text{while } (b_j > a_i \text{ and } i \leq n) \quad \text{O}(n) \]

\[i := i + 1 \]

\[\text{if } i > n \text{ then return false } \quad \text{O}(1) \]

\[\text{if } b_j = a_i \text{ then return true } \quad \text{O}(1) \]

\[\text{return false} \]
Intersecting sorted lists: WHEN

Using product rule

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[i := 1 \]

\[\text{for } j := 1 \text{ to } n \]

\[\quad \text{O(n)} \]

\[\text{return } false \]

Total: \(O(n^2) \)
Intersecting sorted lists: WHEN

More careful analysis ...

Intersect\((a_1, \ldots, a_n, b_1, \ldots, b_n)\)

\[
i := 1
\]

\[
\text{for } j := 1 \text{ to } n
\]

\[
\text{while } (b_j > a_i \text{ and } i \leq n)
\]

\[
i := i + 1
\]

\[
\text{if } i > n \text{ then return } false
\]

\[
\text{if } b_j = a_i \text{ then return } true
\]

\[
\text{return } false
\]

Every time this is executed (except last time in each iteration of for loop), i is incremented. If i ever reaches n+1, the program terminates (returns)
Intersecting sorted lists: WHEN

More careful analysis ...

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[
i := 1
\]

\[
\text{for } j := 1 \text{ to } n
\]

\[
\text{while } (b_j > a_i \text{ and } i \leq n)
\]

\[
i := i + 1
\]

\[
\text{if } i > n \text{ then return } false
\]

\[
\text{if } b_j = a_i \text{ then return } true
\]

return false

This executes $O(2n)$ times total (across all iterations of for loop)
Intersecting sorted lists: WHEN

More careful analysis …

\[\text{Intersect}(a_1, \ldots, a_n, b_1, \ldots, b_n) \]

\[i := 1 \]

\[\text{for } j := 1 \text{ to } n \]

\[\text{while } (b_j > a_i \text{ and } i \leq n) \]

\[i := i + 1 \]

if \(i > n \) then return false

if \(b_j = a_i \) then return true

return false

Total: \(O(n) \)

This executes \(O(2n) \) times total (across all iterations of for loop)

product rule analysis wasn't tight in this case!
Next Week

Recursive algorithms (like Merge Sort and Bucket Sort)

- Design
- Analysis
Reminders

HW 3 due **Wednesday 11:59pm** via Gradescope.

Monday is a holiday. No lecture, discussion section, office hours.