Performance and Asymptotics

<table>
<thead>
<tr>
<th>Lecture A</th>
<th>Tiefenbruck</th>
<th>MWF 9-9:50am</th>
<th>Center 212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture B</td>
<td>Jones</td>
<td>MWF 2-2:50pm</td>
<td>Center 214</td>
</tr>
<tr>
<td>Lecture C</td>
<td>Tiefenbruck</td>
<td>MWF 11-11:50am</td>
<td>Center 212</td>
</tr>
</tbody>
</table>

http://cseweb.ucsd.edu/classes/wi16/cse21-abc/

January 11, 2016
General questions to ask about algorithms

1) **What** problem are we solving? SPECIFICATION

2) **How** do we solve the problem? ALGORITHM DESCRIPTION

3) **Why** do these steps solve the problem? CORRECTNESS

4) **When** do we get an answer? RUNNING TIME PERFORMANCE
Counting comparisons: WHEN

Measure …

Comparisons of list elements!

For selection sort (MinSort), how many times do we have to compare the values of some pair of list elements?
Selection Sort (MinSort) Pseudocode

Rosen page 203, exercises 41-42

procedure selection sort(a₁, a₂, ..., aₙ: real numbers with n ≥ 2)

for i := 1 to n-1
 m := i
 for j := i+1 to n
 if (aⱼ < aₘ) then m := j
 interchange aᵢ and aₘ

{ a₁, ..., aₙ is in increasing order}

For each value of i, compare (n-i) pairs of elements.

Sum of positive integers up to (n-1)

\((n-1) + (n-2) + ... + (1) = n(n-1)/2 \)
Counting operations

When do we get an answer?
RUNNING TIME PERFORMANCE

Counting number of times list elements are compared
Algorithm: problem solving strategy as a sequence of steps

Examples of steps
- Comparing list elements (which is larger?)
- Accessing a position in a list (probe for value)
- Arithmetic operation (+, -, *, ...)
- etc.

"Single step" depends on context
Runtime performance

How long does a "single step" take?

Some factors
- Hardware
- Software

Discuss & list the factors that could impact how long a single step takes

- Hardware: hard drive - how fast
 CPU / clock speed
 temperature
 transistor / flow of info
 memory - RAM vs. cache

- Software: high / low level
 language
 Operating System
 resource sharing - # of threads
 implementation
Runtime performance

How long does a "single step" take?

Some factors
- Hardware (CPU, climate, cache …)
- Software (programming language, compiler)
Runtime performance

The time our program takes will depend on

- Number of steps the algorithm requires
- Time for each of these steps on our system
- Input (size and ???)

 [Image of a clock with parts labeled]

- data itself
Runtime performance

Goal:

Estimate time as a function of the size of the input, n

Ignore what we can't control

Focus on how time scales for large inputs
Focus on how time scales for large inputs

Ignore what we can't control

Which of these functions have the "same" rate of growth?

A. All of them
B. 2^n and n^2
C. n^2 and $3n^2$
D. They're all different
Focus on how time scales for large inputs

Ignore what we can’t control

For functions \(f(n) : \mathbb{N} \rightarrow \mathbb{R}, g(n) : \mathbb{N} \rightarrow \mathbb{R} \) we say

\[
f(n) \in O(g(n))
\]

to mean there are constants, \(C \) and \(k \) such that

\[
|f(n)| \leq C|g(n)| \quad \text{for all } n > k.
\]

Rosen p. 205
Definition of Big O

Ignore what we can't control

Focus on how time scales for large inputs

For functions $f(n) : \mathbb{N} \rightarrow \mathbb{R}$, $g(n) : \mathbb{N} \rightarrow \mathbb{R}$ we say

$$f(n) \in O(g(n))$$

to mean there are constants, C and k such that $|f(n)| \leq C|g(n)|$ for all $n > k$.

Rosen p. 205
Definition of Big O

For functions $f(n) : \mathbb{N} \rightarrow \mathbb{R}, g(n) : \mathbb{N} \rightarrow \mathbb{R}$ we say

$$f(n) \in O(g(n))$$

to mean there are constants, C and k such that

$$|f(n)| \leq C|g(n)|$$

for all $n > k$.

Example:

$$f(n) = 3n^2 + 2n \quad g(n) = n^2$$

What constants can we use to prove that $f(n) \in O(g(n))$?

A. $C = 1/3$, $k = 2$
B. $C = 5$, $k = 1$
C. $C = 10$, $k = 2$
D. None: $f(n)$ isn't big O of $g(n)$.

A) $3n^2 + 2n \leq \frac{1}{3} n^2$ for all $n > 2$

False: counterexample $n = 3$

B) $3n^2 + 2n \leq 5n^2$ for all $n > 1$

$\Rightarrow 2n \leq 2n^2$ for all $n > 1$

True

C) $3n^2 + 2n \leq 10n^2$ for all $n > 2$

Also true
Big O : Notation and terminology

"f(n) is big O of g(n)"

\[f(n) \in O(g(n)) \]

A family of functions which grow no faster than \(g(n) \)

What functions are in the family \(O(n^2) \) ?

- \(3n^2 + 2n \)
 \[\frac{3}{5} \leq \frac{k}{1} \]

- \(5n^2 \)
 \[\frac{5}{1} \leq \frac{1}{1} \]

- \(\frac{n^2}{n} \)
 \[\frac{1}{1} \leq \frac{1}{1} \]

- \(\log n \)
 \[\frac{\log n}{\sqrt{n}} \leq \frac{1}{1} \]

- \(\frac{n}{\sqrt{n}} \)
 \[\frac{\sqrt{n}}{\sqrt{n}} \leq \frac{1}{2} \]

- \(\frac{1}{\frac{1}{8} \cdot n^2} \)
 \[1 \leq \frac{1}{\frac{1}{8} \cdot n^2} \]

for \(n > 2 \)
"f(n) is big O of g(n)"

\[f(n) \in O(g(n)) \]

- The value of \(f(n) \) might always be bigger than the value of \(g(n) \).

- \(O(g(n)) \) contains functions that grow strictly slower than \(g(n) \).

\[3n^2 + 2n \in O(n^2) \]

\(\frac{3n^2 + 2n}{n^2} \) grows no faster than \(n^2 \)

\[n \in O(n^2) \]

example: \(n \in O(n^2) \)
Is $f(n)$ big O of $g(n)$? i.e. is $f(n) \in O(g(n))$?

Approach 1: Look for constants C and k.

Approach 2: Use properties

- **Domination** If $f(n) \leq g(n)$ for all n then $f(n)$ is big-O of $g(n)$.

- **Transitivity** If $f(n)$ is big-O of $g(n)$, and $g(n)$ is big-O of $h(n)$, then $f(n)$ is big-O of $h(n)$

- **Additivity/ Multiplicativity** If $f(n)$ is big-O of $g(n)$, and if $h(n)$ is nonnegative, then $f(n) \cdot h(n)$ is big-O of $g(n) \cdot h(n)$ … where \cdot is either addition or multiplication.

- **Sum is maximum** $f(n) + g(n)$ is big-O of the max($f(n)$, $g(n)$)

- **Ignoring constants** For any constant c, $cf(n)$ is big-O of $f(n)$

Rosen p. 210-213
Is \(f(n) \) big O of \(g(n) \)? i.e. is \(f(n) \in O(g(n)) \)?

Approach 1: Look for constants \(C \) and \(k \).

Approach 2: Use properties

1. **Domination**

 If \(f(n) \leq g(n) \) for all \(n \) then \(f(n) \) is big-O of \(g(n) \).

2. **Transitivity**

 If \(f(n) \) is big-O of \(g(n) \), and \(g(n) \) is big-O of \(h(n) \), then \(f(n) \) is big-O of \(h(n) \).

3. **Additivity/Multiplicativity**

 If \(f(n) \) is big-O of \(g(n) \), and if \(h(n) \) is nonnegative, then \(f(n) \cdot h(n) \) is big-O of \(g(n) \cdot h(n) \) … where \(* \) is either addition or multiplication.

4. **Sum is maximum**

 \(f(n) + g(n) \) is big-O of the \(\max(f(n), g(n)) \).

5. **Ignoring constants**

 For any constant \(c \), \(cf(n) \) is big-O of \(f(n) \).

Rosen p. 210-213

Look at terms one-by-one and drop constants. Then only keep maximum.
Is $f(n)$ big O of $g(n)$? i.e. is $f(n) \in O(g(n))$?

Approach 3. The limit method. Consider the limit

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}.$$

I. If this limit exists and is 0: then $f(n)$ grows strictly slower than $g(n)$.

II. If this limit exists and is a constant $c > 0$: then $f(n)$, $g(n)$, grow at the same rate.

III. If the limit tends to infinity: then $f(n)$ grows strictly faster than $g(n)$.

IV. If the limit doesn't exist for a different reason … use another approach!

In which cases can we conclude $f(n) \in O(g(n))$?

A. I, II, III

B. I, III

C. I, II

D. None of the above
Other asymptotic classes

$f(n) \in O(g(n))$
means there are constants, C and k such that $|f(n)| \leq C|g(n)|$ for all $n > k$.

$f(n) \in \Omega(g(n))$

means $g(n) \in O(f(n))$

ex.) $3n^2 + 2n \in O(n^2) \iff n^2 \in \Omega(3n^2 + 2n)$

$f(n) \in \Theta(g(n))$

means $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$

What functions are in the family $\Theta(n^2)$?
Number of comparisons of list elements

\[(n-1) + (n-2) + \ldots + (1) = \frac{n(n-1)}{2}\]

Rewrite this formula in order notation:

A. \(O(n)\)
B. \(O(n(n-1))\)
C. \(O(n^2)\)
D. \(O(1/2)\)
E. None of the above
Linear Search: HOW

Starting at the beginning of the list, compare items one by one with x until find it or reach the end

```
procedure linear search (x: integer, a_1, a_2, ..., a_n: distinct integers )
    i := 1
    while (i <= n and x ≠ a_i)
        i := i+1
    if i <= n then location := i
    else location := 0
    return location

{ location is the subscript of the term that equals x, or
is 0 if x is not found }```
The time it takes to find $x$ (or determine it is not present) depends on the number of *probes*, that is the number of list entries we have to retrieve and compare to $x$.

How many probes do we make when doing Linear Search on a list of size $n$?

- if $x$ happens to equal the *first* element in the list?
- if $x$ happens to equal the *last* element in the list?
- if $x$ happens to equal an element somewhere in the *middle* of the list?
- if $x$ *doesn't equal any* element in the list?
How fast is Linear Search: WHEN

Best case: 1 probe target appears first
Worst case: n probes target appears last or not at all
Average case: n/2 probes target appears in the middle, (expect to have to search about half of the array ... more on expected value later in the course)

Running time depends on more than size of the input!

Rosen p. 220
Next Time…

Computing runtime performance of more complicated code and algorithms

• Binary Search algorithm
• Consecutive code segments
• Nested code segments
Reminders

HW 2 due **Wednesday 11:59pm**.

Lots of **office hours** today and tomorrow – see course website.

Submit assignments through **Gradescope** – one submission per group.