Randomized Algorithms, Hash Functions

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Instructor</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture A</td>
<td>Tiefenbruck</td>
<td>MWF 9-9:50am</td>
<td>Center 212</td>
</tr>
<tr>
<td>Lecture B</td>
<td>Jones</td>
<td>MWF 2-2:50pm</td>
<td>Center 214</td>
</tr>
<tr>
<td>Lecture C</td>
<td>Tiefenbruck</td>
<td>MWF 11-11:50am</td>
<td>Center 212</td>
</tr>
</tbody>
</table>

http://cseweb.ucsd.edu/classes/wi16/cse21-abc/

March 7, 2016
Selection Problem: WHAT

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$,

find the i^{th} smallest element in the array.
Selection Problem: HOW

Given list of distinct integers a_1, a_2, …, a_n and integer i, $1 \leq i \leq n$,
find the i^{th} smallest element in the array.

What algorithm would you choose if $i=1$?
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$,
find the i^{th} smallest element in the array.

What algorithm would you choose in general?
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$,

find the i^{th} smallest element in the array.

What algorithm would you choose in general? Can sorting help?

Algorithm: first sort list and then step through to find i^{th} smallest. What's its runtime?

A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$,
find the i^{th} smallest element in the array.

What algorithm would you choose in general? Different strategy ...

Pick random list element called “pivot.”

Partition list into those smaller than pivot, those bigger than pivot.

Using i and size of partition sets, determine in which set to continue looking.
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the ith smallest element in the array.

Pick random list element called “pivot.” Partition list into those smaller than pivot, those bigger than pivot. Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $\quad i = 3$
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer $i, 1 \leq i \leq n$, find the i^{th} smallest element in the array.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot. Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ \hspace{1cm} i = 3 \hspace{1cm} \text{Random pivot: 17}
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the array.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot. Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $i = 3$ Random pivot: 17

Smaller than 17: 3, 8, 2 Bigger than 17: 42, 19, 21
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the array.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. 17, 42, 3, 8, 19, 21, 2 $i = 3$ Random pivot: 17

Smaller than 17: 3, 8, 2 Bigger than 17: 42, 19, 21

Has 3 elements so third smallest must be in this set
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the array.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $i = 3$ Random pivot: 17
New list: $3, 8, 2$ $i = 3$
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the array.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot. Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $i = 3$ Random pivot: 17
New list: 3, 8, 2 $i = 3$ Random pivot: 8
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the array.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $i = 3$ Random pivot: 17
New list: $3, 8, 2$ $i = 3$ Random pivot: 8
Smaller than 8: 3, 2 Bigger than 8:
Selection Problem: HOW

Given list of distinct integers \(a_1, a_2, \ldots, a_n\) and integer \(i, 1 \leq i \leq n\), find the \(i^{th}\) smallest element in the array.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot. Using \(i\) and size of partition sets, determine in which set to continue looking.

ex. \(17, 42, 3, 8, 19, 21, 2\) \(i = 3\) Random pivot: 17

New list: 3, 8, 2 \(i = 3\) Random pivot: 8

Smaller than 8: 3, 2 Bigger than 8:

Has 2 elements so third smallest must be "next" element, i.e. 8
Selection Problem: HOW

Given list of distinct integers a_1, a_2, \ldots, a_n and integer i, $1 \leq i \leq n$, find the i^{th} smallest element in the array.

Pick random list element called “pivot.”
Partition list into those smaller than pivot, those bigger than pivot.
Using i and size of partition sets, determine in which set to continue looking.

ex. $17, 42, 3, 8, 19, 21, 2$ $i = 3$ Random pivot: 17
New list: $3, 8, 2$ $i = 3$ Random pivot: 8
Smaller than 8: $3, 2$ Bigger than 8:

Return 8 compare to original list: $17, 42, 3, 8, 19, 21, 2$
Selection Problem: HOW

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,
Selection Problem: HOW

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,

$\text{RandSelect}(A,i)$

1. If $n=1$ return a_1

What are we doing in this first line?

A. Establishing the base case of the recursion.
B. Establishing the induction step.
C. Randomly picking a pivot.
D. Randomly returning a list element.
E. None of the above.
Selection Problem: HOW

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,

$\text{RandSelect}(A, i)$

1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
Selection Problem: HOW

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,

$\text{RandSelect}(A,i)$

1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
7. Let s be the size of S.
8. If $s = i-1$, return a_j.
Selection Problem: HOW

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,

$\text{RandSelect}(A, i)$

1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):

 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
7. Let s be the size of S.
8. If $s = i-1$, return a_j.
9. If $s \geq i$, return $\text{RandSelect}(S, i)$.
10. If $s < i$, return $\text{RandSelect}(B, _???_)$.

What's the right way to fill in this blank?
A. i
B. s
C. $i+s$
D. $i-(s+1)$
E. None of the above.
Selection Problem: WHEN

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,

$\text{RandSelect}(A,i)$

1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
7. Let s be the size of S.
8. If $s = i-1$, return a_j.
9. If $s \geq i$, return $\text{RandSelect}(S, i)$.
10. If $s < i$, return $\text{RandSelect}(B, i-(s+1))$.

What input gives the best-case performance of this algorithm?
A. When element we're looking for is the first in list.
B. When element we're looking for is the i^{th} in list.
C. When element we're looking for is in the middle of the list.
D. When element we're looking for is last in list.
E. None of the above.
Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,

$\text{RandSelect}(A, i)$

1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
7. Let s be the size of S.
8. If $s = i-1$, return a_j.
9. If $s \geq i$, return $\text{RandSelect}(S, i)$.
10. If $s < i$, return $\text{RandSelect}(B, i-(s+1))$.

Performance depends on more than the input!
Selection Problem: WHEN

Given list of distinct integers $A = a_1, a_2, \ldots, a_n$ and integer i, $1 \leq i \leq n$,

$\text{RandSelect}(A, i)$

1. If $n=1$ return a_1
2. Initialize lists S and B.
3. Pick integer j uniformly at random from 1 to n.
4. For each index k from 1 to n (except j):
 5. if $a_k < a_j$, add a_k to the list S.
 6. if $a_k > a_j$, add a_k to the list B.
7. Let s be the size of S.
8. If $s = i-1$, return a_j.
9. If $s \geq i$, return $\text{RandSelect}(S, i)$.
10. If $s < i$, return $\text{RandSelect}(B, i-(s+1))$.

Minimum time if we happen to pick pivot which is the i^{th} smallest list element.

In this case, what's the runtime?
A. $\Theta(1)$
B. $\Theta(n)$
C. $\Theta(n \log n)$
D. $\Theta(n^2)$
E. None of the above
Selection Problem: WHEN

How can we give a time analysis for an algorithm that is allowed to pick and then use random numbers?

$T(x)$: a random variable that represents the runtime of the algorithm on input x

Compute the **worst-case expected time**

$ET(n) = \max_{x, |x| \leq n} E(T(x))$

worst case over all inputs of size n

average runtime incorporating random choices in the algorithm
How can we give a time analysis for an algorithm that is allowed to pick and then use random numbers?

$T(x)$: a random variable that represents the runtime of the algorithm on input x

Compute the **worst-case expected time**

$$ET(n) = \max_{x, |x| \leq n} E(T(x))$$

Recurrence equation … unravelling …

$$\Theta(n) \approx 2n$$
Selection Problem: WHEN

Situation so far:

Sort then search takes worst-case $\Theta(n \log n)$

Randomized selection takes worst-case expected time $\Theta(n)$
Selection Problem: WHEN

Situation so far:

Sort then search takes worst-case $\Theta(n \log n)$

Randomized selection takes worst-case expected time $\Theta(n)$

How do we implement randomized algorithms? Are there deterministic algorithms that perform as well?

For selection problem: Blum et al, yes!

In general: open 😊
Element Distinctness: WHAT

Given list of positive integers a_1, a_2, \ldots, a_n decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions i, j with $1 \leq i < j \leq n$ such that $a_i = a_j$.

What algorithm would you choose in general?

1. Compare all pairs, looking for a match.

$$\Theta(n^2) = (n-1)+(n-2)+(n-3)+\ldots+1$$
Element Distinctness: HOW

Given list of positive integers \(a_1, a_2, \ldots, a_n\) decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions \(i, j\) with \(1 \leq i < j \leq n\) such that \(a_i = a_j\).

What algorithm would you choose in general? Can sorting help?

Algorithm: first sort list and then step through to find duplicates. What's its runtime?

A. \(\Theta(1)\)
B. \(\Theta(n)\)
C. \(\Theta(n \log n)\)
D. \(\Theta(n^2)\)
E. None of the above
Element Distinctness: HOW

Given list of positive integers a_1, a_2, \ldots, a_n decide whether all the numbers are distinct or whether there is a repetition, i.e. two positions i, j with $1 \leq i < j \leq n$ such that $a_i = a_j$.

What algorithm would you choose in general? Can sorting help?

Algorithm: first sort list and then step through to find duplicates. How much memory does it require?

- A. $\Theta(1)$
- B. $\Theta(n)$
- C. $\Theta(n \log n)$
- D. $\Theta(n^2)$
- E. None of the above
Reminders

HW 8 due **Wednesday** at 11:59pm via Gradescope.

Final exam:

<table>
<thead>
<tr>
<th>Section</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A00</td>
<td>Wed, March 16</td>
<td>8:00am - 11:00am</td>
</tr>
<tr>
<td>B00</td>
<td>Mon, March 14</td>
<td>3:00pm - 6:00pm</td>
</tr>
<tr>
<td>C00</td>
<td>Mon, March 14</td>
<td>11:30am - 2:30pm</td>
</tr>
</tbody>
</table>

See website for practice final, review session details, seating charts. Review sessions are Thursday evening and Saturday at noon.