Encoding and Decoding

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Instructor</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture A</td>
<td>Tiefenbruck</td>
<td>MWF 9-9:50am</td>
<td>Center 212</td>
</tr>
<tr>
<td>Lecture B</td>
<td>Jones</td>
<td>MWF 2-2:50pm</td>
<td>Center 214</td>
</tr>
<tr>
<td>Lecture C</td>
<td>Tiefenbruck</td>
<td>MWF 11-11:50am</td>
<td>Center 212</td>
</tr>
</tbody>
</table>

http://cseweb.ucsd.edu/classes/wi16/cse21-abc/

February 19, 2016
A permutation of r elements from a set of n distinct objects is an ordered arrangement of them. There are

$$P(n,r) = n(n-1)(n-2) \ldots (n-r+1)$$

many of these.

A combination of r elements from a set of n distinct objects is an unordered selection of them. There are

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

many of these.

Binomial coefficient "n choose r"
Fixed-density Binary Strings

How many length n binary strings contain k ones?

Density is number of ones

Objects: all strings made up of $0_1, 0_2, 1_1, 1_2, 1_3, 1_4$

Categories: strings that agree except subscripts

Size of each category:

$$k!(n-k)!$$

$$\# \text{ categories} = \frac{\# \text{ objects}}{\text{size of each category}} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Rosen p. 413

Fixed-density Binary Strings

Density is number of ones
What's the **smallest** number of **bits** that we need to specify a binary string if we know it **has** **k** **ones** and **n-k** **zeros**?

A. n
B. k
C. $\log_2(\binom{n}{k})$
D. ??

Rosen p. 413

Encoding Fixed-density Binary Strings

$$\left\lceil \log_2 \left(\text{# objects} \right) \right\rceil = \# \text{bits needed}$$

ex.) so states: $\left\lceil \log_2 50 \right\rceil = 6$ bits
Data Compression

Store / transmit information in as little space as possible
Data Compression: Video

Video: stored as sequence of still frames.

Idea: instead of storing each frame fully, record change from previous frame.
Data Compression: Run-Length Encoding

Image: described as grid of pixels, each with RED, GREEN, BLUE values.

Idea: instead of storing RGB value of each pixel, store run-length of run of same color.

When is this a good coding mechanism? Will there be any loss in this compression?
Lossy Compression: Singular Value Decomposition

Image: described as grid of pixels, each with RED, GREEN, BLUE values.

Idea: use Linear Algebra to compress data to a fraction of its size, with minimal loss.
Complicated compression scheme

… save storage space
… may take a long time to encode / decode
Palindromes: string that reads the same forward and backward.

Which of these are binary palindromes?

A. The empty string.
B. 0101. [Incorrect]
C. 0110.
D. 101.
E. All but one of the above.
Encoding: Binary Palindromes

Palindrome: string that reads the same forward and backward.

How many length n binary palindromes are there?

A. 2^n
B. n
C. $n/2$
D. $\log_2 n$
E. None of the above
Encoding: Binary Palindromes

Palindrome: string that reads the same forward and backward.

How many bits are (optimally) required to encode length n binary palindromes?

A. n
B. $n-1$
C. $\left\lceil \frac{n}{2} \right\rceil$
D. $\log_2 n$
E. None of the above.

Is there an algorithm that achieves this?
Goal: encode a length n binary string that we know has k ones (and n-k zeros).

How would you represent such a string with $n-1$ bits?

Example: $n=7$, $k=4$
Goal: encode a length n binary string that we know has k ones (and $n-k$ zeros).

How would you represent such a string with $n-1$ bits?

Can we do better?
Goal: encode a length n binary string that we know has k ones (and n-k zeros).

How would you represent such a string with \(n-1 \) bits?

Can we do better?

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 011000000010$?

Output:

There's a 1! What's its position?

Note: The position is stored in the final bit of the encoding.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010 ?

Output: 01

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode $s = 01\overline{1}000000010$? Output: 01

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 0100000010? Output: 0100

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100

No 1s in this window.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 011\underline{000000010}$?

Output: 01000

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 01000

There's a 1! What's its position?
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode $s = 0110000000\underline{1}0$?

Output: 01000011

There's a 1! What's its position?
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 0100011

No 1s in this window.
Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example: n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010? Output: 01000110.

No 1s in this window.
Encoding: Fixed Density Strings

Idea: give positions of 1s in the string within some smaller window.
- Fix window size.
- If there is a 1 in the current "window" in the string, record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 011000000010$? Output: 01000110. Compressed to 8 bits!

But can we recover the original string? Decoding …
Encoding: Fixed Density Strings

With $n=12$, $k=3$, window size $n/k = 4$. **Output:** 01000110

Can be parsed as the (intended) input: $s = 011000000010$? *But also:*

01: one in position 1
0: no ones
00: one in position 0
11: one in position 3
0: no ones

$\text{Opposite order as intended}$

$s' = 010000100010$

Problem: two different inputs with same output. Can't uniquely decode.
A **valid compression algorithm** must:

- Have outputs of shorter (or same) length as input.
- Be uniquely decodable.
Can we modify this algorithm to get unique decodability?

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output:
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 011000000010$? Output:
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output:

What output corresponds to these first few bits?
A. 0
B. 1
C. 01
D. 101
E. None of the above.

The correct answer is D. 101.
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 01100000010? Output: 101

Interpret next bits as position of 1; this position is 01
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example: n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 101
Idea: use marker bit to indicate when to interpret output as a position.
 - Fix window size.
 - If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
 - Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 0100000010 ?

Interpret next bits as position of 1; this position is 00

Output: 101100
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12, k=3$, window size $n/k = 4$.

How do we encode $s = 011\underline{000}00010$? Output: 101100
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size $n/k = 4$.

How do we encode $s = 01100000010$?

Output: 1011000

No 1s in this window.
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ? Output: 1011000
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output: 1011000111

Interpret next bits as position of 1; this position is 11
Idea: use **marker bit** to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output: 1011000111
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output: 10110001110

No 1s in this window.
Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example $n=12$, $k=3$, window size $n/k = 4$.

How do we encode $s = 011000000010$? Output: 10110001110

Compare to previous output: 01000110

Output uses more bits than last time. Any redundancies?
Encoding: Fixed Density Strings

Idea: use marker bit to indicate when to interpret output as a position.
- Fix window size.
- If there is a 1 in the current "window" in the string, record a 1 to interpret next bits as position, then record its position and move the window over.
- Otherwise, record a 0 and move the window over.

Example n=12, k=3, window size n/k = 4.

How do we encode s = 011000000010 ?

Output: 10110001110

Compare to previous output: 01000110

* After see the last 1, don't need to add 0s to indicate empty windows. *
procedure WindowEncode (input: \(b_1b_2...b_n\), with exactly \(k\) ones and \(n-k\) zeros)

1. \(w := \text{floor} \ (n/k)\)
2. \(\text{count} := 0\)
3. \(\text{location} := 1\)
4. While \(\text{count} < k\):
5. If there is a 1 in the window starting at current location
6. Output 1 as a marker, then output position of first 1 in window.
7. Increment count.
8. Update location to immediately after first 1 in this window.
9. Else
10. Output 0.
11. Update location to next index after current window.

Uniquely decodable?
Decoding: Fixed Density Strings

procedure WindowDecode (input: \(x_1x_2\ldots x_m\), target is exactly \(k\) ones and \(n-k\) zeros)

1. \(w := \text{floor} \left(\frac{n}{k} \right)\)
2. \(b := \text{floor} \left(\log_2(w) \right)\)
3. \(s := \text{empty string}\)
4. \(i := 0\)
5. While \(i < m\)
 6. \(\text{If } x_i = 0\)
 7. \(s += 0\ldots 0\) (\(j\) times)
 8. \(i += 1\)
 9. \(\text{Else}\)
 10. \(p := \text{decimal value of the bits } x_{i+1}\ldots x_{i+b}\)
 11. \(s += 0\ldots 0\) (\(p\) times)
 12. \(s += 1\)
 13. \(i := i+b+1\)
14. If length\(s\) < \(n\)
 15. \(s += 0\ldots 0\) (\(n-\text{length}(s)\) times)
16. Output \(s\).
Correctness?

$E(s) =$ result of encoding string s of length n with k 1s, using \textit{WindowEncode}.

$D(t) =$ result of decoding string t to create a string of length n with k 1s, using \textit{WindowDecode}.

Well-defined functions? Inverses?

\textbf{Goal: For each }s\textbf{, }$D(E(s)) = s$\textbf{.}

\textbf{Strong Induction!}
Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s.

How long is \(E(s) \)?

A. \(n-1 \)
B. \(\log_2(\frac{n}{k}) \)
C. Depends on where 1s are located in \(s \)
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

For which strings is $E(s)$ shortest?

A. More 1s toward the beginning.
B. More 1s toward the end.
C. 1s spread evenly throughout.
Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Best case: 1s toward the beginning of the string. $E(s)$ has
- One bit for each 1 in s to indicate that next bits denote positions in window.
- $\log_2(n/k)$ bits for each 1 in s to specify position of that 1 in a window.
- k such ones.
- No bits representing 0s because all 0s are "caught" in windows with 1s or after the last 1.

Total $|E(s)| = k \log_2(n/k) + k$
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Worst case: 1s toward the end of the string. $E(s)$ has
- Some bits representing 0s since there are no 1s in first several windows.
- One bit for each 1 in s to indicate that next bits denote positions in window.
- $\log_2(n/k)$ bits for each 1 in s to specify position of that 1 in a window.
- k such ones.

What's an upper bound on the number of these bits?
A. n
B. $n-k$
C. k
D. 1
E. None of the above.
Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Worst case: 1s toward the end of the string. $E(s)$ has
- At most k bits representing 0s since there are no 1s in first several windows.
- One bit for each 1 in s to indicate that next bits denote positions in window.
- $\log_2(n/k)$ bits for each 1 in s to specify position of that 1 in a window.
- k such ones.

Total $|E(s)| \leq k \log_2(n/k) + 2k$
Encoding/Decoding: Fixed Density Strings

Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

$$k \log_2(n/k) + k \leq |E(s)| \leq k \log_2(n/k) + 2k$$

Using this inequality, there are at most ____ length n strings with k 1s.

A. 2^n
B. n
C. $(n/k)^2$
D. $(n/k)^k$
E. None of the above.
Output size?

Assume n/k is a power of two. Consider s a binary string of length n with k 1s. Given $|E(s)| \leq k \log_2(n/k) + 2k$, we need at most $k \log_2(n/k) + 2k$ bits to represent all length n binary strings with k 1s. Hence, there are at most $2^{k \log_2(n/k) + 2k}$ many such strings.
Assume n/k is a power of two. Consider s a binary string of length n with k 1s.

Given $|E(s)| \leq k \log_2(n/k) + 2k$, we need at most $k \log_2(n/k) + 2k$ bits to represent all length n binary strings with k 1s. Hence, there are at most $2^{(k \log(n/k) + 2k)}$ many such strings.

$$2^{(k \log(n/k) + 2k)} = 2^{(k \log(n/k))} \cdot 2^{(2k)}$$

$$= (2^{(\log(n/k))})^k \cdot 2^{(2k)}$$

$$= (n/k)^k \cdot 4^k = (4n/k)^k$$
Output size?

Assume \(n/k \) is a power of two. Consider \(s \) a binary string of length \(n \) with \(k \) 1s. Given \(|E(s)| \leq k \log_2(n/k) + 2k\), we need at most \(k \log_2(n/k) + 2k \) bits to represent all length \(n \) binary strings with \(k \) 1s. Hence, there are at most \(2^{(k \log_2(n/k) + 2k)} \) many such strings.

\[
2^{(k \log_2(n/k)+2k)} = 2^{(k \log_2(n/k))} \cdot 2^{(2k)} = \left(2^{\log_2(n/k)}\right)^k \cdot 2^{(2k)} = \left((n/k)^k \cdot 4^k \right) = (4n/k)^k
\]

\(C(n,k) = \# \text{ Length } n \text{ binary strings with } k \text{ 1s} \leq (4n/k)^k \)
Bounds for Binomial Coefficients

Using $\text{windowEncode}()$: \[\binom{n}{k} \leq (4n/k)^k\]

Lower bound?

Idea: find a way to count a subset of the fixed density binary strings.

Some fixed density binary strings have one 1 in each of k chunks of size n/k.

How many such strings are there?

A. n^n
B. $k!$
C. $(n/k)^k$
D. $C(n,k)^k$
E. None of the above.
Bounds for Binomial Coefficients

Using \texttt{windowEncode()}: \[
{n \choose k} \leq (4n/k)^k
\]

Using evenly spread strings:

\[
(n/k)^k \leq {n \choose k}
\]

Counting helps us analyze our \textit{compression algorithm}.

\textit{Compression algorithms} help us \textit{count}.
Reminders

HW 7 due **Wednesday 11:59pm** via Gradescope.