<table>
<thead>
<tr>
<th>Lecture A</th>
<th>Tiefenbruck</th>
<th>MWF 9-9:50am</th>
<th>Center 212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture B</td>
<td>Jones</td>
<td>MWF 2-2:50pm</td>
<td>Center 214</td>
</tr>
<tr>
<td>Lecture C</td>
<td>Tiefenbruck</td>
<td>MWF 11-11:50am</td>
<td>Center 212</td>
</tr>
</tbody>
</table>

http://cseweb.ucsd.edu/classes/wi16/cse21-abc/

February 10, 2016
Trees

1. Definitions of trees

2. Properties of trees

3. Revisiting uses of trees

In data structures:
Binary search trees
Binary Search Trees

- Facilitate binary search (must maintain sorted order of data)
- Dynamic

**Implementation**

Each vertex is an object with the fields

\[ \begin{align*}
  p &= \text{parent} \\
  lc &= \text{left child} \\
  rc &= \text{right child} \\
  \text{value} &= \text{value}
\end{align*} \]

**When is \( p \) null?**

- A. If we have an error in our implementation.
- B. When the value is 0.
- C. When the vertex is a leaf node.
- D. When the vertex is the root node.
- E. None of the above.
Binary Search Trees

- Facilitate binary search (must maintain sorted order of data)
- Dynamic

Implementation

Each vertex is an object with the fields:

- \( p = \text{parent} \)
- \( \text{lc} = \text{left child} \)
- \( \text{rc} = \text{right child} \)
- \( \text{value} \)

When is \( \text{lc} = \text{null} \)?

A. If we have an error in our implementation.
B. When the value is 0.
C. When the vertex is a leaf node.
D. When the vertex is the root node.
E. None of the above.
Binary Search Trees

- Facilitate binary search (must maintain sorted order of data)
- Dynamic

For each vertex \( v \)
- If \( x \) is in subtree rooted at \( \text{lc}(v) \), \( \text{value}(x) \leq \text{value}(v) \).
- If \( x \) is in the subtree rooted at \( \text{rc}(v) \), \( \text{value}(x) \geq \text{value}(v) \).
Binary Search Trees

- Facilitate binary search (must *maintain sorted order* of data)
- Dynamic

How would you search for "orange"?
Binary Search Trees

- Facilitate binary search (must maintain sorted order of data)
- Dynamic

To search for target T in a binary search tree:

1. Compare T to value(r) where r is the root.
2. If T = value(r), done 😊.
3. If T < value(r), search recursively starting at lc(r).
4. If T > value(r), search recursively starting at rc(r).
Binary Search Trees

- Facilitate binary search (must maintain sorted order of data)
- Dynamic

To search for target T in a binary search tree.

1. Compare T to value(r) where r is the root.
2. If T = value(r), done 😊.
3. If T < value(r), search recursively starting at lc(r).
4. If T > value(r), search recursively starting at rc(r).

How long does this take?
Binary Search Trees

- Facilitate binary search (must maintain sorted order of data)
- Dynamic

To search for target T in a binary search tree.

1. Compare T to value(r) where r is the root.
2. If T = value(r), done 😊.
3. If T < value(r), search recursively starting at lc(r).
4. If T > value(r), search recursively starting at rc(r).

How long does this take? Constant time at each level. Number of levels is height+1.
Binary Search Trees

- Facilitate binary search (must maintain sorted order of data)
- Dynamic

To search for target T in a binary search tree.

1. Compare T to value(r) where r is the root.
2. If T = value(r), done 😊.
3. If T < value(r), search recursively starting at lc(r).
4. If T > value(r), search recursively starting at rc(r).

How long does this take? Time proportional to height!
An unrooted tree is a connected undirected graph with no cycles.

Rosen p. 746
Theorem: An undirected graph is an unrooted tree if and only if it contains all the edges of some rooted tree.

What does this mean?

(1) If we replace all directed edges in a rooted tree with undirected edges, the result will be an unrooted tree.

(2) There is always some way to put directions on the edges of an unrooted tree to make it a rooted tree.
Goal (1): If we replace all directed edges in a rooted tree with undirected edges, the result will be an unrooted tree.

What do we need to prove?
A. The resulting undirected graph will be connected.
B. The resulting undirected graph will be undirected.
C. The resulting undirected graph will not have cycles.
D. All of the above.
Equivalence between rooted and unrooted trees

**Goal (1):** If we replace all directed edges in a rooted tree with undirected edges, the result will be an **unrooted tree**.

**SubGoal (1a):** this resulting graph is connected, i.e. between any two vertices u and v there is a path in the graph.

*Idea:* To find path between purple and orange, follow parents of purple all the way to root, then follow its children down to orange.
Goal (1): If we replace all directed edges in a rooted tree with undirected edges, the result will be an unrooted tree.

SubGoal (1b): this resulting graph has no cycles.

Idea: Towards a contradiction, assume there is a cycle and consider the simplest cycle (with no repeated vertices). Start at vertex at highest level in the cycle. Next step must go to a child node, etc. Can never go up to higher level again because vertices in rooted tree only have one incoming edge.
Goal (2): There is always some way to put directions on the edges of an unrooted tree to make it a rooted tree.

Idea: finding right directions for edges will be similar to finding topological sort of a DAG.
Equivalence between rooted and unrooted trees

**Goal (2):** There is always some way to put directions on the edges of an unrooted tree to make it a rooted tree.

**SubGoal (2a):** Any unrooted tree with at least two vertices has a vertex of degree exactly 1.

**Proof:** Towards a contradiction, assume that all n vertices have degree 0 or $\geq 2$. Since a tree is connected, eliminate the case of degree-0 vertices. **Goal:** construct a cycle to arrive at a contradiction.

Start at any vertex $u_0$. Pick $u_{i+1}$ so that it is adjacent to $u_i$ but is not $u_{i-1}$. Why?

Get $u_0, u_1, \ldots, u_n$. By Pigeonhole Principle, must repeat. Cycle!
Equivalence between rooted and unrooted trees

**Goal (2):** There is always some way to put directions on the edges of an unrooted tree to make it a rooted tree.

**SubGoal (2b):** If $T$ is unrooted tree and $v$ has degree 1 in $T$, then $T-\{v\}$ is unrooted tree.

**Proof:** To check that $T-\{v\}$ is unrooted tree, confirm

* $T-\{v\}$ is connected and

* $T-\{v\}$ does not have a cycle.
Goal (2): There is always some way to put directions on the edges of an unrooted tree to make it a rooted tree.

SubGoal (2b): If T is unrooted tree and v has degree 1 in T, then T-{v} is unrooted tree.

Proof: To check that T-{v} is unrooted tree, confirm

* T-{v} is connected and

* T-{v} does not have a cycle.
Equivalence between rooted and unrooted trees

**Goal (2):** There is always some way to put directions on the edges of an unrooted tree to make it a rooted tree.

Using the subgoals to achieve the goal:

Root($T$: unrooted tree with $n$ nodes)
1. If $n=1$, let the only vertex $v$ be the root, set $h(v):=0$, and return.
2. Find a vertex $v$ of degree 1 in $T$, and let $u$ be its only neighbor.
3. Root($T$-$\{v\}$).
4. Set $p(v):=u$ and $h(v):=h(u)+1$.  

Recursion!
Counting

1, 2, 3, 4, …
What do we mean by counting?

How many arrangements or combinations of objects are there of a given form?

How many of these have a certain property?
Why is counting important?

For computer scientists:

- **Hardware**: How many ways are there to arrange components on a chip?
- **Algorithms**: How long is this loop going to take? How many times does it run?
- **Security**: How many passwords are there?
- **Memory**: How many bits of memory should be allocated to store an object?
Miis

In some video games, each player can create a character with custom facial features.

How many distinct characters are possible?
In some video games, each player can create a character with custom facial features. How many distinct characters are possible?

Considering only these 12 hairstyles and 8 hair colors, how many different characters are possible?

A. $8 + 12 = 20$
B. $8 \times 12 = 96$
C. $8^{12} = 68719476736$
D. $12^8 = 429981696$
E. None of the above
For any sets, A and B: \(|A \times B| = |A| |B|\)

In our example:

\[ A = \{ \text{hair styles} \} \quad |A| = 12 \]
\[ B = \{ \text{hair colors} \} \quad |B| = 8 \]

\( A \times B = \{ (s, c) : s \text{ is a hair style and } c \text{ is a hair color} \} \)

\(|A \times B| = \text{the number of possible pairs of hair styles & hair colors} = \text{the number of different ways to specify a character} \)
For any sets, $A$ and $B$: $|A \times B| = |A| \cdot |B|$

More generally:

Suppose that a procedure can be broken down into a sequence of two tasks. If there are $n_1$ ways to do the first task and for each of these ways of doing the first task, there are $n_2$ ways to do the second task, then there are $n_1 \cdot n_2$ ways to do the procedure.
For any sets, A and B: \(|A \times B| = |A| \cdot |B|\)

More generally:

To count the number of pairs of objects:
* Count the number of choices for selecting the first object.
* Count the number of choices for selecting the second object.
* Multiply these two counts.

CAUTION: this will only work if the number of choices for the second object doesn't depend on which first object we choose.
Other than the 96 possible custom Miis, a player can choose one of 10 preset characters.

How many different characters can be chosen?

A. 96  
B. 10  
C. 106  
D. 960  
E. None of the above.
For any disjoint sets, A and B: $|A \cup B| = |A| + |B|$

In our example:

$A = \{ \text{custom characters} \}$ \quad |A| = 96

$B = \{ \text{preset characters} \}$ \quad |B| = 10

$A \cup B = \{ m : m \text{ is a character that is either custom or preset} \}$

$|A \cup B| = \text{the number of possible characters}$
For any disjoint sets, $A$ and $B$: $|A \cup B| = |A| + |B|$

More generally:

If a task can be done either in one of $n_1$ ways or in one of $n_2$ ways, where none of the set of $n_1$ ways is the same as any of the set of $n_2$ ways, then there are $n_1 + n_2$ ways to do the task.
For any disjoint sets, A and B: \( |A \cup B| = |A| + |B| \)

More generally:

To count the number of objects with a given property:
* Divide the set of objects into mutually exclusive (disjoint/nonoverlapping) groups.
* Count each group separately.
* Add up these counts.
Select which method lets us count the number of length n binary strings.

A. The product rule.
B. The sum rule.
C. Either rule works.
D. Neither rule works.
Length n binary strings

Select which method lets us count the number of length n binary strings.

A. The product rule. Select first bit, then second, then third …
B. The sum rule. \{0\ldots\} \cup \{1\ldots\} gives recurrence \(N(n) = 2N(n-1), N(0)=1\)
C. Either rule works.
D. Neither rule works.
How many binary strings of length \( n \) are there?

How many bits does it take to store a length \( n \) binary string?
Memory: storing length $n$ binary strings

How many binary strings of length $n$ are there? $2^n$

How many bits does it take to store a length $n$ binary string? $n$

**General principle:** number of bits to store an object is

$$\left\lceil \log_2(\text{number of objects}) \right\rceil$$

Why the ceiling function?
Scenario: We want to store a non-negative integer that has at most n digits. How many bits of memory do we need to allocate?

A. $n$
B. $2^n$
C. $10^n$
D. $n \cdot \log_{10} 10$
E. $n \cdot \log_{10} 2$
Ice cream!

At an ice cream parlor, you can choose to have your ice cream in a bowl, cake cone, or sugar cone. There are 20 different flavors available.

How many single-scoop creations are possible?

A. 20  
B. 23  
C. 60  
D. 120  
E. None of the above.
At an ice cream parlor, you can choose to have your ice cream in a bowl, cake cone, or sugar cone. There are 20 different flavors available. You can convert your single-scoop of ice cream to a sundae. Sundaes come with your choice of caramel or hot-fudge. Whipped cream and a cherry are options. How many desserts are possible?

A. $20 \times 3 \times 2 \times 2$
B. $20 \times 3 \times 2 \times 2 \times 2$
C. $20 \times 3 + 20 \times 3 \times 2 \times 2$
D. $20 \times 3 + 20 \times 3 \times 2 \times 2 \times 2$
E. None of the above.
In one request, four jobs arrive to a server: J1, J2, J3, J4.

The server starts each job right away, splitting resources among all active ones.

Different jobs take different amounts of time to finish.

**How many possible finishing orders are there?**

A. $4^4$
B. $4+4+4+4$
C. $4 \times 4$
D. None of the above.
A scheduling problem

In one request, four jobs arrive to a server: J1, J2, J3, J4.

The server starts each job right away, splitting resources among all active ones.

Different jobs take different amounts of time to finish.

**How many possible finishing orders are there?**

*Product rule analysis*

- 4 options for which job finishes first.
- Once pick that job, 3 options for which job finishes second.
- Once pick those two, 2 options for which job finishes third.
- Once pick first three jobs, only 1 remains.

\[(4)(3)(2)(1) = 4! = 24\]
Permutations

Permutation:
rearrangement / ordering of n distinct objects so that each object appears exactly once

Theorem 1: The number of permutations of n objects is
\[ n! = n(n-1)(n-2) \ldots (3)(2)(1) \]

Convention: 0! = 1
Traveling salesperson

Planning a trip to

New York
Chicago
Baltimore
Los Angeles
San Diego
Minneapolis
Seattle

Must **start in New York** and **end in Seattle**.

How many ways can the trip be arranged?

A. $7!$
B. $2^7$
C. None of the above.
Traveling salesperson

Planning a trip to

New York
Chicago
Baltimore
Los Angeles
San Diego
Minneapolis
Seattle

Must **start in New York** and **end in Seattle**.
Must also **visit Los Angeles immediately after San Diego**.

*How many ways can the trip be arranged now?*
Traveling salesperson

Planning a trip to:

- New York
- Chicago
- Baltimore
- Los Angeles
- San Diego
- Minneapolis
- Seattle

Must **start in New York** and **end in Seattle**.
Must also **visit Los Angeles immediately after San Diego**.

How many ways can the trip be arranged now?

Treat LA & SD as a single stop.

$$(1)(4!)(1) = 24$$ arrangements.
Planning a trip to

New York
Chicago
Baltimore
Los Angeles
San Diego
Minneapolis
Seattle

Must **start in New York** and **end in Seattle**.
Must also **visit Los Angeles and San Diego immediately after each other (in any order)**.

*How many ways can the trip be arranged now?*
Traveling salesperson

Planning a trip to

New York
Chicago
Baltimore
Los Angeles
San Diego
Minneapolis
Seattle

Must start in New York and end in Seattle.
Must also visit Los Angeles and San Diego immediately after each other (in any order).

How many ways can the trip be arranged now?

Break into two disjoint cases:
Case 1: LA before SD 24 arrangements
Case 2: SD before LA 24 arrangements
Traveling salesperson

Planning a trip to

New York
Chicago
Baltimore
Los Angeles
San Diego
Minneapolis
Seattle

Must start in New York and end in Seattle.
Must also visit Los Angeles and San Diego immediately after each other (in any order).

How many ways can the trip be arranged now?
Traveling salesperson

Planning a trip to

<table>
<thead>
<tr>
<th></th>
<th>NY</th>
<th>Chicago</th>
<th>Balt.</th>
<th>LA</th>
<th>SD</th>
<th>Minn.</th>
<th>Seattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY</td>
<td>0</td>
<td>800</td>
<td>200</td>
<td>2800</td>
<td>2800</td>
<td>1200</td>
<td>2900</td>
</tr>
<tr>
<td>Chicago</td>
<td>800</td>
<td>0</td>
<td>700</td>
<td>2000</td>
<td>2100</td>
<td>400</td>
<td>2000</td>
</tr>
<tr>
<td>Balt.</td>
<td>200</td>
<td>700</td>
<td>0</td>
<td>2600</td>
<td>2600</td>
<td>1100</td>
<td>2700</td>
</tr>
<tr>
<td>LA</td>
<td>2800</td>
<td>2000</td>
<td>2600</td>
<td>0</td>
<td>100</td>
<td>1900</td>
<td>1100</td>
</tr>
<tr>
<td>SD</td>
<td>2800</td>
<td>2100</td>
<td>2600</td>
<td>100</td>
<td>0</td>
<td>2000</td>
<td>1300</td>
</tr>
<tr>
<td>Minn.</td>
<td>1200</td>
<td>400</td>
<td>1100</td>
<td>1900</td>
<td>2000</td>
<td>0</td>
<td>1700</td>
</tr>
<tr>
<td>Seattle</td>
<td>2900</td>
<td>2000</td>
<td>2700</td>
<td>1100</td>
<td>1300</td>
<td>1700</td>
<td>0</td>
</tr>
</tbody>
</table>

Is there an order of visiting the cities that stops at each city exactly once and minimizes the distance traveled?
Traveling salesperson

Planning a trip to

New York
Chicago
Baltimore
Los Angeles
San Diego
Minneapolis
Seattle

Is there an order of visiting the cities that stops at each city exactly once and minimizes the distance traveled?

Want a Hamiltonian tour
Traveling salesperson

Developing an algorithm which, given a set of cities and distances between them, computes a shortest distance path between all of them is **NP-hard** (considered intractable, very hard).

Is there **any** algorithm for this question?

A. No, it's not possible.
B. Yes, it's just very slow.
C. ?

Want a Hamiltonian tour
Exhaustive search algorithm

List all possible orderings of the cities. 
For each ordering, compute the distance traveled. 
Choose the ordering with minimum distance.

How long does this take?
Traveling salesperson

Exhaustive search algorithm: given \( n \) cities and distances between them.

List all possible orderings of the cities.
For each ordering, compute the distance traveled.
Choose the ordering with minimum distance.

\[ O(\text{number of orderings}) \]

How long does this take?

Want a Hamiltonian tour
Traveling salesperson

Exhaustive search algorithm: given $n$ cities and distances between them.

List all possible orderings of the cities.  
For each ordering, compute the distance traveled.  
Choose the ordering with minimum distance.  

$$O\left(\text{number of orderings}\right)$$

How long does this take?

A. $O(n)$  
B. $O(n^2)$  
C. $O(n^n)$  
D. $O(n!)$  
E. None of the above.

Want a Hamiltonian tour
Exhaustive search algorithm: given $n$ cities and distances between them.

List all possible orderings of the cities.
For each ordering, compute the distance traveled.
Choose the ordering with minimum distance.

How long does this take?

A. $O(n)$
B. $O(n^2)$
C. $O(n^n)$
D. $O(n!)$
E. None of the above.

Moral: counting gives upper bound on algorithm runtime.
Reminders

HW 5 due tonight **11:59pm** via Gradescope.

Monday is a holiday. No lecture, discussion, or office hours.