1 Classes R.E. and co-R.E.

Previously we have proved that the set of computable problems is the same under different computation models including 1-tape TM, k-tape TM, and RAM. Similarly we have seen the set of polynomial-time solvable problems (denoted by P) is also equal under these different computation models.

We also introduced Time Hierarchy. If we define

$$QP = \bigcup_k \text{TIME}(2^{\log^k n})$$
$$\text{EXP} = \bigcup_k \text{TIME}(2^{2^n k})$$
$$EE = \bigcup_k \text{TIME}(2^{2^n k})$$

We have

$$P \subsetneq QP \subsetneq \text{EXP} \subsetneq EE \subsetneq \text{EEE} \cdots \subsetneq \text{COMP} \subseteq \text{R.E.}$$

where COMP is the set of computable languages, and R.E. is the set of recursive enumerable languages.

Definition 1.1. A language L is in the class R.E. if there exists a Turing machine M such that for all $x \in L$, $M(x)$ halts and accepts, and for all $x \notin L$, $M(x)$ does not accept (it may reject, or it may not halt.)
Let \(\text{HALT} = \{(M, x) | M \text{ eventually halts on } x\} \).

Proposition 1.1. \(\text{HALT} \in \text{R.E.} \).

Definition 1.2. A language \(L \) is in the class co-R.E. if \(\bar{L} = \{x | x \notin L\} \) is in R.E..

Definition 1.3. A language \(L \) is in the class COMP (or recursive) if there exists a Turing machine \(M \) such that for all \(x \in L \), \(M \) halts and accepts, and for all \(x \notin L \), \(M(x) \) halts and rejects.

Proposition 1.2. \(\text{HALT} \notin \text{COMP} \).

Theorem 1.3. \(\text{COMP} = \text{R.E.} \cap \text{co-R.E.} \).

Proof sketch. Here we prove one direction: if \(L \in \text{R.E.} \) and \(L \in \text{co-R.E.} \) then \(L \in \text{COMP} \). Let \(M_1 \) be a TM so that if \(x \in L \), \(M_1 \) halts and accepts; if \(x \notin L \), \(M_1 \) either rejects or never halts. Let \(M_0 \) be a TM so that if \(x \notin L \), \(M_0 \) halts and accepts; if \(x \in L \), \(M_0 \) either rejects or never halts.

We run the following algorithm:

1. \(T \leftarrow 1 \)
2. While not done, do
 (a) Run \(M_0 \) and \(M_1 \) for \(T \) steps.
 (b) If \(M_0 \) accepts, reject and done.
 (c) If \(M_1 \) accepts, accept and done.
 (d) \(T \leftarrow 2T \)

Each time we simulate both \(M_0 \) and \(M_1 \) for \(T \) steps. Because either \(M_0 \) rejects \(L \) or \(M_1 \) accepts \(L \), our algorithm will terminate. So \(L \) is in COMP. \(\square \)

Corollary. \(\text{HALT} \notin \text{co-R.E.} \).

\(\text{NOT HALT} \), the complement class of \(\text{HALT} \), is in \(\text{co-R.E.} \), because \(\text{HALT} \in \text{R.E.} \).

1.1 Remarks

R.E. is analogous to a \(\exists \) quantifier: \(L \in \text{R.E.} \) means for some \(L' \in \text{COMP} \),

\[x \in L \iff \exists T \ (x, T) \in L' \]

co-R.E. is analogous to a \(\forall \) quantifier: \(L \in \text{co-R.E.} \) means for some \(L' \in \text{COMP} \),

\[x \in L \iff \forall T \ (x, T) \in L' \]
The relation between NP and co-NP is similar. NP is the class of languages that accept strings having some \exists quantified properties, while strings accepted by a co-NP language have some \forall quantified properties. These classes will be introduced in the future lectures.

$P \subseteq NP \cap co-NP$. It is open whether $P = NP$ (equivalently $P = co-NP$), $NP = co-NP$ or $P = NP \cap co-NP$.

2 Turing Reductions

Recall that $HALT = \{(M, x) \mid M \text{ halts on } x\}$. We define $ACCEPT = \{(M, x) \mid M \text{ eventually accepts } x\}$. We show that if $HALT \in COMP$, then $ACCEPT \in COMP$. If we can decide if $(M, x) \in HALT$, then we can decide if $(M, x) \in ACCEPT$ in the following way.

1. If $(M, x) \in HALT$, then
 (a) run M on x.
 (b) If M accepts x, then accept, otherwise reject.
2. Else reject.

What we have done is a Turing reduction from $ACCEPT$ to $HALT$. We say there is a Turing reduction from language L to language L', denoted by $L \leq_T L'$, if there is an algorithm with a “sub-procedure” for L that recognizes L.

Example: $\overline{L} \leq_T L$ (by simply negating the answer from the oracle machine deciding L.)

Lemma 2.1.

1. If $L \leq_T L'$, and $L' \in COMP$, then $L \in COMP$.
2. $L \leq_T L'$, and $L' \leq_T L''$, then $L \leq_T L''$.
3 Mapping Reductions

We say there is a mapping reduction (also called many-one reduction) from language L to language L', denoted by $L \leq_m L'$ if there is a computable function f so that $x \in L$ iff $f(x) \in L'$.

A mapping reduction from ACCEPT to HALT is constructed as follows:

To decide whether $(M, x) \in \text{ACCEPT}$, we modify M to get a machine M' so that
1. M' simulates M, but
2. whenever M halts and accepts, M halts,
3. whenever M halts and rejects, M' loops forever.

Now we have $(M', x) \in \text{HALT}$ iff $(M, x) \in \text{ACCEPT}$.

Lemma 3.1.

1. If $L \leq_m L'$, and $L' \in \text{COMP}$, then $L \in \text{COMP}$.
2. $L \leq_m L'$, and $L' \leq_m L''$, then $L \leq_m L''$.
3. $L \leq_m L'$, and $L' \in \text{R.E.}$, then $L \in \text{R.E.}$.

Unlike Turing reductions, $\overline{L} \leq_m L$ might not hold true. Because in mapping reductions, we cannot use negation of the answer by the oracle machine of L, like we did in Turing reductions.

Define NOT HALT to be the complement of HALT. Does $\text{NOT HALT} \leq_m \text{HALT}$? The answer is No, because $\text{NOT HALT} \notin \text{R.E.}$, but $\text{HALT} \in \text{R.E.}$, which contradicts the third point of Lemma 3.1.

HALT is R.E.-complete under mapping reductions. That means $\forall L \in \text{R.E.}, L \leq_m \text{HALT}$.

$\forall L \in \text{R.E.}, L \leq_m \text{ACCEPT}$. Because $x \in L$ iff a Turing machine M_0 halts and accepts x, iff $(M_0, x) \in \text{ACCEPT}$. From $\text{ACCEPT} \leq_m \text{HALT}$, we get $L \leq_m \text{HALT}$.

3.1 Remarks

In general, given $L \leq L'$, (\leq can be either Turing or mapping reductions)

1. If we know L' is easy, then we know L is also easy.
2. If we know L' is hard, then we know nothing about L.
3. If we know L is hard, then we know L' is also hard.
4. If we know L is easy, then we know nothing about L'.