1 Immerman-Szelepcsényi Theorem

The theorem states the nondeterministic classes of space complexity are closed under complement.

Theorem 1 (Immerman-Szelepcsényi Theorem). For any function $S(n) \geq \log n$,

$$NSPACE(S(n)) = \text{co-NSPACE}(S(n)).$$

This theorem was surprising when it was discovered. Before it, people conjectured $NL \neq \text{co-NL}$. But the theorem shows $NL = \text{co-NL}$.

In linguistics there is a thesis saying all human languages are context-sensitive. CSL, the set of context-sensitive languages, is exactly $NSPACE(n)$. By Theorem 1 CSL = co-CSL (the complement of a context-sensitive language is also context-sensitive).

Recall that an accepting computation of a TM is a path in the configuration graph from the start configuration node to the accepting configuration node. (Here we assume there is only one accepting configuration) So a TM doesn’t accept means there are no paths from the start configuration node to the accepting configuration node.

To prove that for any $L \in NSPACE(S(n))$ there is $\overline{L} \in NSPACE(S(n))$, we need to come up with a nondeterministic algorithm that certifies t is not reachable from s. Since the size of graph is $2^{O(S(n))}$, our nondeterministic algorithm should use space logarithmic to the graph size.

<table>
<thead>
<tr>
<th>Problem: (s, t)-UNCONN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Input: Graph G, nodes s, t.</td>
</tr>
<tr>
<td>• Output: If t is not reachable from s, output “Yes”, otherwise output “No”.</td>
</tr>
</tbody>
</table>

We construct an algorithm in NL that decides (s, t)-UNCONN.

Let N be a nondeterministic algorithm. We say N computes $f(x)$ if

(A) every non-rejecting run of N outputs $f(x)$
(B) on every \(x \), at least one path accepts.

Define value \(\text{count}_\ell \) to be the number of vertices \(v \) that are reachable from \(s \) by a path of length at most \(\ell \). Initially, \(\text{count}_1 = d(s) + 1 \).

To compute \(\text{count}_\ell \), we define \(R(G, s, v, \ell, \text{count}) = \begin{cases} 1, & \text{if } v \text{ is reachable from } s \text{ in } \leq \ell \text{ steps.} \\ 0, & \text{otherwise.} \end{cases} \), where \(\text{count} \) is the number of nodes reachable from \(s \) by paths of length no more than \(\ell \).

\[\begin{align*}
\text{Algorithm } R(s, v, \ell, \text{count}) \\
&\text{for each } u \in V - \{v\} \text{ do} \\
&\quad b \leftarrow \text{guess if } u \text{ is reachable from } s \text{ in } \ell \text{ steps} \\
&\quad \text{newcount} \leftarrow \text{newcount} + b \\
&\quad \text{if } b = 1 \text{ then} \\
&\quad\quad \text{guess a path from } s \text{ to } u \text{ of length } \leq \ell. \\
&\quad\quad \text{if we don't reach } u \text{ then reject.} \\
\end{align*}\]

\(\alpha:\)
\[\begin{align*}
&\text{if } \text{newcount} = \text{count} \text{ then return } \text{“0”.} \\
&\text{if } \text{newcount} = \text{count} - 1 \text{ then} \\
&\quad \text{guess a path to } v \\
&\quad \text{if we find it then return } \text{“1” else reject.} \\
&\text{else reject.}
\end{align*}\]

The nondeterministic algorithm computing \(R(s, v, \ell, \text{count}) \) works as follows: for each vertex \(u \) other than \(v \), we guess if there is a path from \(s \) to \(u \) of length \(\ell \). Every time we make a wrong guess, we reject. At point \(\alpha \), all our previous paths were checked to be correct. If \(\text{newcount} = \text{count} \), then it means all paths of length \(\ell \) are already found previously in \(V - \{v\} \), thus \(v \) cannot be reached from \(s \) in \(\ell \) steps. If \(\text{newcount} = \text{count} - 1 \), then it is possible that the only uncounted path reaches \(v \). Thus we guess a path to \(v \) and check if it is the case. If \(\text{newcount} < \text{count} - 1 \), then it means for some \(u \) reachable from \(s \), we didn't make the guess that \(u \) is reachable.

As long as \(v \) is reachable from \(s \) within \(\ell \) steps, there is always a sequence of correct guesses that finally returns with “1". On the other hand, if \(v \) is not reachable, then all sequences of guesses are either wrong and thus rejected, or correct and thus returns with “0”.

Each variable in the algorithm uses memory \(\log n \). So the space complexity is \(\log n \).

Next we show the algorithm that computes \(\text{count}_\ell \) from \(\text{count}_{\ell - 1} \) using \(R \) as a subroutine.

\[\begin{align*}
\text{Algorithm } \#G(s, \ell, \text{count}_{\ell - 1}) \\
&\text{count}_\ell \leftarrow 0 \\
&\text{for each } v \text{ do} \\
&\quad \text{for each } u \text{ do} \\
&\quad\quad \text{if } (u, v) \in E \text{ and } R(s, u, \ell - 1, \text{count}_{\ell - 1}) \text{ then} \\
&\quad\quad\quad \text{count}_\ell \leftarrow \text{count}_\ell + 1 \\
&\quad\quad\text{break;}
\end{align*}\]
Finally, we can reuse the variables for $count_\ell$.

Algorithm (s, t)-UNCONN

```
count ← 1
for $\ell ← 1$ to $n$ do
  count ← $\#G(s, \ell, count)$
  if $R(s, t, n, count) = 1$ then return false
return true
```

Because the number of variables is constant, and the space complexity of each variable is $O(\log n)$, the whole algorithm is in NL.

2 Probabilistic computation

Say we have an equation $(x + y + z)^{137} - (x + 2y - z)^{137} = z^{137}$. To test if it's valid (i.e. true on all values of x, y, z), we can plug in random values for x, y, z and see if the equation holds.

Theorem 2 (Schwartz-Zippel-DeMillo-Lipton Lemma). If $p(x_1, \ldots, x_n)$ is a non-zero polynomial of degree D, and let x_1, \ldots, x_n be uniformly and independently selected from set S, then $\Pr[p(x_1, \ldots, x_n) = 0] \leq D/|S|$.