Today's learning goals

- Determine and prove whether a given binary relation is
 - symmetric
 - antisymmetric
 - reflexive
 - transitive
- Represent equivalence relations as partitions and vice versa
- Define and use the congruence modulo m equivalence relation
- Define and use the posets given by: ≤, |, subset inclusion, prefix, lexicographic
- Define and prove properties of maximal and minimal elements
Let A, B be sets. **Binary relation from A to B** is (any) subset of $A \times B$.

Examples

- $A = B = \mathbb{Z}$
 - $R = \{(x, y) : x < y\}$

- $A = \{0,1\}^*$ $B = \mathbb{N}$
 - $R = \{(w, n) : |w| = n\}$

- $A = \{0,1,2\}$ $B = \{a,b\}$
 - $R = \{(0,a), (1,a), (1,b)\}$

Rosen Sections 9.1, 9.3 (second half), 9.5, 9.6
Relation on a set A

R is subset of $A \times A$. It is called

reflexive iff $\forall a((a, a) \in R)$

symmetric iff $\forall a \forall b((a, b) \in R \rightarrow (b, a) \in R)$

antisymmetric iff $\forall a \forall b([(a, b) \in R \land (b, a) \in R] \rightarrow a = b)$

transitive iff $\forall a \forall b \forall c([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R)$

Rosen pp 576-578
New representation of relations on a set A

$$A = \mathcal{P}(\{1, 2\})$$

$X \ R \ Y$ iff $X \subseteq Y$

![Diagram showing the old and new representations of relations on a set A. The old representation has arrows pointing from each subset to itself, while the new representation includes additional arrows connecting subsets to themselves.]
Relation on a set A

R is subset of $A \times A$. It is called

- **reflexive** iff \(\forall a \ (a, a) \in R \)
 self loops

- **symmetric** iff \(\forall a \forall b \ (a, b) \in R \rightarrow (b, a) \in R \)
 paired arrows

- **antisymmetric** iff \(\forall a \forall b \ ([(a, b) \in R \land (b, a) \in R] \rightarrow a = b) \)

- **transitive** iff \(\forall a \forall b \forall c \ ([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R) \)
 chains collapse

Rosen pp 576-578
Relation on a set A, more generally

$A = \mathcal{P}(\{1, 2\})$

$X \ R \ Y \ \text{iff} \ X \subseteq Y$

Which of the following properties hold for R?

A. Reflexive, i.e. $\forall a((a, a) \in R)$

B. Symmetric, i.e. $\forall a \forall b((a, b) \in R \rightarrow (b, a) \in R)$

C. Antisymmetric, i.e.

$$\forall a \forall b([(a, b) \in R \land (b, a) \in R] \rightarrow a = b)$$

D. Transitive, i.e.

$$\forall a \forall b \forall c([(a, b) \in R \land (b, c) \in R] \rightarrow (a, c) \in R)$$

E. None of the above.
Relation on a set \(A \), more generally

Example \(\mathbb{Z} \)

\[R = \{(x,y) : x < y\} \]

Which of the following properties hold for \(R \)?

A. Reflexive, i.e. \(\forall a ((a, a) \in R) \)
B. Symmetric, i.e. \(\forall a \forall b ((a, b) \in R \rightarrow (b, a) \in R) \)
C. Antisymmetric, i.e. \(\forall a \forall b ((a, b) \in R \land (b, a) \in R \rightarrow a = b) \)
D. Transitive, i.e. \(\forall a \forall b \forall c ((a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R) \)
E. None of the above.
Partial order relations

- A relation R on set S is a **partial ordering** iff it is **reflexive**, **antisymmetric**, and **transitive**.

Examples on the set of integers: "less than or equal", "greater than or equal"
Example on the set of positive integers: divisibility
Example on power set of a set: subset inclusion
Example on set of binary strings: "is a prefix of"
Orders on set of strings

For u,v in $\{0,1\}^*$

u is a **prefix** of v iff $\exists w (v = uw)$

Which of the following is true?

A. $\forall x\forall y (x$ is a prefix of $y)$
B. $\exists x\forall y (x$ is a prefix of $y)$
C. $\exists x\forall y (y$ is a prefix of $x)$
D. $\forall x\forall y (y$ is a prefix of $x \lor y$ is a prefix of $x)$
E. None of the above.
Lexicographic order

• Is there a way to **totally order** the set of binary strings?
Lexicographic order

Is there a way to totally order the set of binary strings?

Here's one way …

\[u < v \quad \text{iff} \quad \begin{align*}
& u \text{ is a prefix of } v, \\
& \text{or, the letter in } u \text{ in the first position where } u \text{ and } v \text{ differ is 0.}
\end{align*} \]
Maximal and minimal elements

For R an order relation on S and for any subset T of S:

- q in T is **minimum** element of T \(\forall x((x \in T \land x \neq q) \rightarrow qRx) \)

- q in T is **minimal** element of T \(\forall x((x \in T \land x \neq q) \rightarrow \neg(xRq)) \)

- q in T is **maximum** element of T \(\forall x((x \in T \land x \neq q) \rightarrow xRq) \)

- q in T is **maximal** element of T \(\forall x((x \in T \land x \neq q) \rightarrow \neg(qRx)) \)
Maximal and minimal elements

For R an order relation on S and for any subset T of S:

- q in T is **minimum** element of T \(\forall x((x \in T \land x \neq q) \rightarrow qRx) \)
- q in T is **minimal** element of T \(\forall x((x \in T \land x \neq q) \rightarrow \neg(xRq)) \)
- q in T is **maximum** element of T \(\forall x((x \in T \land x \neq q) \rightarrow xRq) \)
- q in T is **maximal** element of T \(\forall x((x \in T \land x \neq q) \rightarrow \neg(qRx)) \)

Does the poset of \{0,1\}#* with prefix partial order have a minimal element? a maximal element? a minimum element? a maximum element?

What if we remove the empty string from the set?
Equivalence relations

• Group together "similar" objects

Rosen p. 608
Equivalence relations

Two formulations

A relation R on set S is an equivalence relation if it is reflexive, symmetric, and transitive.

$x R y$ iff x and y are "similar"

Partition S into equivalence classes, each of which consists of "similar" elements: collection of disjoint, nonempty subsets that have S as their union

x,y both in A_i iff x and y are "similar"
Equivalence relations on strings

Which of the following binary relations on \{0,1\}^* are equivalence relations?

A. \(u R_1 v \) iff \(|u| = |v|\)
B. \(u R_2 v \) iff the first bit of \(u\) is not equal to the first bit of \(v\)
C. \(u R_3 v \) iff \(u\) is the reverse of \(v\)
D. More than one of the above
E. None of the above

How to prove?
For a,b in \mathbb{Z} and m in \mathbb{Z}^+ we say a is congruent to b mod m iff

$$m \mid (a-b)$$

i.e.

$$\exists q (a - b =qm)$$

and in this case, we write

$$a \equiv b \pmod{m}$$

Which of the following is true?

A. $5 \equiv 10 \pmod{3}$
B. $5 \equiv 1 \pmod{3}$
C. $5 \equiv 3 \pmod{3}$
D. $5 \equiv -1 \pmod{3}$
E. None of the above.
Claim: Congruence mod m is an equivalence relation

Proof:

Reflexive?
Symmetric?
Transitive?

What partition of the integers is associated with this equivalence relation?
Next up

- Modular arithmetic