Today's learning goals

- Describe computer representation of sets with bitstrings
- Define and compute the cardinality of finite sets
- Explain the steps in a proof by mathematical induction
- Use mathematical induction to prove
 - correctness of identities and inequalities
 - properties of algorithms
 - properties of geometric constructions
Representing sets

Set of home network components:
{ server, switch, workstation, wifi, iPhone, laptop, Smartphone, Desktop Roommate1, Desktop Roommate2, Desktop Roommate3}
Set of home network components:
\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}
How to represent the subset which contains all the desktop PCs?

A. \{8, 9, 10\}
B. \{10, 8, 9\}
C. \{8, 8, 9, 10\}
D. None of the above.
E. All of the above.
Representing sets

Set of home network components: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Alternatively: using bit strings

first bit is 0 if item 1 (server) is not in the set; 1 if it is
second bit is 0 if item 2 (switch) is not in the set; 1 if it is

How to represent the subset which contains all the desktop PCs using bit strings?
A. 0000000000
B. 0000000111
C. 1110000000
D. None of the above.
E. All of the above.
Representing sets

Assume that universal set U is finite of size n (and n is not too big). Specify arbitrary ordering of elements of U: $a_1, a_2, a_3, \ldots, a_n$.

Represent set X by the bit string where, for each i, the ith bit in the bit string is 1 if a_i is an element of X and it's 0 if a_i is not an element of X.

Describe, using set operations, the set described by the bit string which results from taking the bit string for A and flipping each bit $0 \rightarrow 1$, $1 \rightarrow 0$.

A. The power set of A, $\mathcal{P}(A)$
B. The union of A with itself, $A \cup A$
C. The difference $U - A$
D. The Cartesian product $A \times A$
E. None of the above.
Representing sets

Assume that universal set U is finite of size n (and n is not too big). Specify arbitrary ordering of elements of U: $a_1, a_2, a_3, \ldots, a_n$.

Represent set X by the bit string where, for each i, the ith bit in the bit string is 1 if a_i is an element of X and it's 0 if a_i is not an element of X.

Describe, using set operations, the set described by the bit string which results from taking the bit string for A and flipping each bit $0 \rightarrow 1$, $1 \rightarrow 0$.

A. The power set of A, $\mathcal{P}(A)$
B. The union of A with itself, $A \cup A$
C. The difference $U - A$
D. The Cartesian product $A \times A$
E. None of the above.
Operations on sets

- If the set A is finite then

$$|\mathcal{P}(A)| =?$$

What are the possible subsets of A?

Does the power set of A depend *just* on the size of A?

Does the *size* of the power set of A depend *just* on the size of A?
Operations on sets

- If the set A is finite then

 What are the possible subsets of A?

 Does the power set of A depend just on the size of A?

 Does the size of the power set of A depend just on the size of A?

 Represent subset X of A by the bit string where, for each i, the ith bit in the bit string is 1 if a_i is an element of X and it's 0 if a_i is not an element of X.

 $a_1 \ a_2 \ a_3 \ a_4 \ldots a_{|A|}$
Operations on sets

If the set A is finite then

$$|\mathcal{P}(A)| = 2^{\left|A\right|}$$

What are the possible subsets of A?
Does the power set of A depend just on the size of A?
Does the size of the power set of A depend just on the size of A?

$(0/1) (0/1) (0/1) \ldots (0/1)$
Operations on sets

Rosen Sections 2.1, 2.2

- If the sets A, B are finite and disjoint then

$$|A \times B| = |A| \cdot |B|$$

| B | many elements
for each of the $|A|$ many elements in A |
How do we prove these general formulas?

\[|A \times B| = |A| \cdot |B| \]

\[|\mathcal{P}(A)| = 2^{|A|} \]
How do we prove these general formulas?

\[|A \times B| = |A| \cdot |B| \]

\[|\mathcal{P}(A)| = 2^{|A|} \]

Key: how do sizes change as increase |A| by 1?
How do we prove these general formulas?

\[|A \times B| = |A| \cdot |B| \]

|\mathcal{P}(A)| = 2^{|A|}

Key: how do sizes change as |A| increase by 1?

How much does |AxB| change when we add one new element to A?

A. Add one element.
B. Add |B| many elements.
C. Multiply number of elements by |B|.
D. Raise number of elements to |B|^th power.
E. None of the above.
How do we prove these general formulas?

\[|A \times B| = |A| \cdot |B| \]

\[|\mathcal{P}(A)| = 2^{|A|} \]

Key: how do sizes change as increase \(|A|\) by 1?

How much does \(|\mathcal{P}(A)|\) change when we add one new element to \(A\)?

A. Add one element.
B. Add \(|B|\) many elements.
C. Multiply number of elements by \(|B|\).
D. Raise number of elements to \(|B|^\text{th} \) power.
E. None of the above.
How do we prove these general formulas?

\[|A \times B| = |A| \cdot |B| \quad f(n + 1) = f(n) + |B| \]

\[|\mathcal{P}(A)| = 2^{|A|} \quad g(n + 1) = 2g(n) \]
How do we prove these general formulas?

\[|A \times B| = |A| \cdot |B| \quad f(n + 1) = f(n) + |B| \]
\[|\mathcal{P}(A)| = 2^{|A|} \quad g(n + 1) = 2g(n) \]
Induction: a road map

• Today
 • What is a proof by induction?
 • Examples: inequalities, algorithms, constructions

• Tuesday
 • Strong induction
 • Recursive definitions: functions, sets, sigma notation
 • More examples / proofs: identities, constructions
Proof strategies so far

Theorem: \(\forall x P(x) \) over a given domain.

Strategy (1): Let x be arbitrary element of the domain. WTS P(x) is true.

Strategy (2) if domain finite: Enumerate all x in domain. WTS P(x) is true.

Strategy (3) Proof by contradiction: Assume there is an x with P(x) false. WTS badness!

Theorem: \(\exists x P(x) \) over a given domain.

Strategy (1): Define x = …. (some specific element in domain) WTS P(x) is true.

Strategy (2) Proof by contradiction: Assume that for all x, P(x) is false. WTS badness!

Theorem: \(P \rightarrow Q \) over a given domain.

Strategy (1): Toward direct proof, assume P and WTS Q.

Strategy (2): Toward proof by contrapositive, assume Q is false and WTS P is also false.

Strategy (3) Proof by contradiction: Assume both P is true and Q is false. WTS badness!
A new proof strategy

To show that some statement $P(k)$ is true about all nonnegative integers k,

1. Show that it’s true about 0 i.e. $P(0)$
2. Show $P(0) \rightarrow P(1)$ Hence conclude $P(1)$
3. Show $P(1) \rightarrow P(2)$ Hence conclude $P(2)$
4. Show $P(2) \rightarrow P(3)$ Hence conclude $P(3)$
5. …..
A new proof strategy

To show that some statement $P(k)$ is true about all nonnegative integers k,:

1. Show that it’s true about 0 i.e. $P(0)$
2. Show $P(0) \rightarrow P(1)$ Hence conclude $P(1)$
3. Show $P(1) \rightarrow P(2)$ Hence conclude $P(2)$
4. Show $P(2) \rightarrow P(3)$ Hence conclude $P(3)$
5. …..
Mathematical induction

To show that some statement $P(k)$ is true about all nonnegative integers k,

1. Show that it’s true about 0 i.e. $P(0)$
2. Show $\forall k \ P(k) \rightarrow P(k + 1)$ Hence conclude $P(1), \ldots$
An inequality \((1 + \frac{1}{2})^n \geq 1 + \frac{n}{2}\)

Theorem: This inequality is true for all nonnegative integers.

Proof: by Mathematical Induction.

What's P(n)?

A. \((1 + \frac{1}{2})^n \geq 1 + \frac{n}{2}\)

B. \((1 + \frac{1}{2})^k \geq 1 + \frac{n}{2}\)

C. \((1 + \frac{1}{2})^k\)

D. \((1 + \frac{n}{2})^k\)

E. None of the above.
An inequality \((1 + \frac{1}{2})^n \geq 1 + \frac{n}{2}\)

Theorem: This inequality is true for all nonnegative integers

Proof: by Mathematical Induction.

1. **Basis step** WTS \((1 + \frac{1}{2})^0 \geq 1 + \frac{0}{2}\)

2. **Inductive hypothesis** Let \(k\) be a nonnegative integer. Assume \((1 + \frac{1}{2})^k \geq 1 + \frac{k}{2}\)

3. **Induction step** WTS \((1 + \frac{1}{2})^{k+1} \geq 1 + \frac{k+1}{2}\)
Theorem: If start with an equilateral triangle and divide each side into n equal segments, then connect the division points with all possible line segments parallel to sides of original triangle, then ______ many small triangles will be contained in the larger one.
Robot

Start at origin, moves on infinite 2-dimensional integer grid. At each step, move to diagonally adjacent grid point.

Can it ever reach (1,0)?
Lemma (Invariant): The sum of the coordinates of any state reachable by the robot is even.

Proof of Lemma: by mathematical induction on the number of steps.

Using proof: Sum of coordinates of (1,0) is 1 so not even!