In this homework, we practice the analysis and synthesis of sequential networks. For the first problem, we draw the timing diagram of the latch and flip-flop. For the second problem, we translate a pattern recognizer into state diagrams and state tables. For the third problem, we analyze the behavior of a sequential circuit. For the last problem, we design the circuit from a given description.

1. Timing Diagram of Latch and Flip-Flop: Given the input waveforms shown below, sketch the outputs.

<table>
<thead>
<tr>
<th></th>
<th>CLK</th>
<th>D</th>
<th>D-latch</th>
<th>D-FF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. A sequential network has one binary input \(x(t) \) and one binary output \(y(t) \). The network produces \(y = 1 \), whenever input pattern \(x(t - 2, t) = 100 \) or \(110 \). Otherwise, the output \(y = 0 \).

2.1 Design the system as a Mealy machine with a minimal number of states.
 (i) Draw the state diagram.
 (ii) Write the state table.

2.2 Design the system as a Moore machine with a minimal number of states.
 (i) Draw the state diagram.
 (ii) Write the state table.

3. Given the circuit as described in zyBook 3.8.2, replace the state register with two T flip-flops.
 (i) Write the state table.
 (ii) Draw the state diagram.

4. A state machine has one input \(x(t) \) and two-bit state \((Q_1(t), Q_0(t))\). The machine is described by the following state equations.
 \[
 Q_1(t+1) = Q_0(t) + x'(t)Q_1'(t),
 Q_0(t+1) = Q_1'(t) + x(t)Q_0(t),
 y(t) = Q_1(t)Q_0(t)
 \]
 Use two JK flip-flops and a minimal two-level NAND network to implement the machine.
(i). Write the state excitation table and draw the state diagram.
(ii). Show your derivation (K maps) and draw the logic diagram.