CSE 262
Lecture 9

Stencil Methods
Announcements

• Final presentations:
 Friday March 13th, 10 AM to 12 Noon
Today’s lecture

• Stencil methods
• MPI Implementation
• Under the hood of MPI
• Debugging in MPI programs
• Multigrid
Stencil methods

- Many physical problems are simulated on a uniform mesh in 1, 2 or 3 dimensions
- Field variables defined on a discrete set of points
- A mapping from ordered pairs to physical observables like temperature and pressure
- Important applications
 - Differential equations
 - Image processing
Digital Image Representation

![Image of digital image representation with RGB values]

RGB representation

Red
Green
Blue

Ryan Cuprak

Images by Martin Juell

Photos by Martin Juell

wikipedia
Canonical stencil method: image smoothing

for iter = 1 : nSmooth
 for (i,j) in 0:N−1 x 0:N−1
 \(\text{Img}^{\text{new}}[i,j] = \frac{(\text{Img}[i-1,j] + \text{Img}[i+1,j] + \text{Img}[i,j-1] + \text{Img}[i, j+1])}{4} \)
 end
 \(\text{Img} = \text{Img}^{\text{new}} \)
end

Original 100 iter 1000 iter
Stencil methods under message passing

• Partition computation and data, assigning each partition to a unique process: “Owner computes rule”
• Different partitionings according to the processor geometry
• Dependences on values found on neighboring processes
• Communicate off-processor data
Communication

• Expensive to communicate each mesh box individually
• Send/Recv data *en masse* into *ghost regions* on neighboring processors
• Packing and unpacking of non-contiguous data on some boundaries

![Diagram of mesh boxes and processors](image-url)
Managing ghost cells

- Post `IReceive()` for all neighbors
- **Send** data to neighbors
- **Wait** for completion
Performance is sensitive to processor geometry

- Aliev-Panfilov method running on triton.sdsc.edu (Nehalem Cluster)
- 256 cores, n=2047, t=10 (8932 iterations)

<table>
<thead>
<tr>
<th>Geometry</th>
<th>GFlops</th>
<th>Gflops w/o Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 x 8</td>
<td>573</td>
<td>660</td>
</tr>
<tr>
<td>8 x 32</td>
<td>572</td>
<td>662</td>
</tr>
<tr>
<td>16 x 16</td>
<td>554</td>
<td>665</td>
</tr>
<tr>
<td>2 x 128</td>
<td>508</td>
<td>658</td>
</tr>
<tr>
<td>4 x 64</td>
<td>503</td>
<td>668</td>
</tr>
<tr>
<td>128 x 2</td>
<td>448</td>
<td>658</td>
</tr>
<tr>
<td>256 x 1</td>
<td>401</td>
<td>638</td>
</tr>
</tbody>
</table>
Modeling the parallel running time

- The model has two parts
 - Local computation
 - Communication
- We may ignore the convergence test (check infrequently)
- Communication overheads are due to ghost cell updates
- 2 kinds of geometries: strips vs boxes
Model assumptions and definitions

- \(T(1,(m,n)) = \) running time of the best serial algorithm on a problem of size \(m \times n \)
- \(T(P,(m,n)) = \) running time on \(P \) processors
- \(T_\gamma(P,(m,n)) = \) grind time on \(P \) processors
 - \(T_\gamma(P,(m,n)) = T(P,(m,n))/(m \cdot n \cdot Niter) \)
 - Ideally \(T_\gamma \) is independent of \(m, n, \) and \(P \)
- Processor geometry is \(p \times q \)
 - Strips or box–like partitions
- \(T(P,(N,N)) = T(1,(m,n)) + T_{\text{comm}}, \) \(m = N/p, \) \(n = N/q \)
- \(T_{\text{comm}} = \alpha + \beta^{-1} \infty n \) [oversimplified!]
- Following analysis applies to a Poisson Solver

\[
u'[i,j] = (u[i-1, j] + u[i+1, j] + u[i, j-1] + u[i, j+1] - h^2 b[i-1, j-1])/4\]
Communication costs for 1D geometries

• Assumptions
 - P divides N evenly
 - N/P > 2
 - 1 word = double precision floating point = 8 bytes

• For horizontal strips, data are contiguous
 \(T_{\text{comm}} = 2(\alpha + 8\beta N) \)
2D Processor geometry

• Assumptions
 ◆ \sqrt{P} divides N evenly
 ◆ $N/\sqrt{P} > 2$
 ◆ 1 word = double precision floating pt. = 8 bytes
• Ignore the cost of packing message buffers
• $T_{\text{comm}} = 4(\alpha + 8\beta N/\sqrt{P})$
Summing up communication costs

• Substituting $T_\gamma \approx 16 \beta$

• 1-D decomposition

\[
(16N^2 \beta/P) + 2(\alpha+8\beta N)
\]

• 2-D decomposition

\[
(16N^2 \beta/P) + 4(\alpha+8\beta N/\sqrt{P})
\]
Comparative performance

• Strip decomposition will outperform box decomposition …
 resulting in lower communication times …
 when \[2(\alpha+8\beta N) < 4(\alpha+8\beta N/\sqrt{P}) \]

• Assuming \(P \geq 2 \):
 \[N < (\sqrt{P}/(\sqrt{P} – 2))(\alpha/(8\beta)) \]

• On Bang
 \(\alpha = 1.2 \text{ us}, \beta = 1/(1.4 \text{ GB/sec}) \)
 • \(N < 210(\sqrt{P}/(\sqrt{P} – 2)) \)
 • For \(P = 16 \), strips are preferable when \(N < 280 \)

• On SDSC’s IBM SP3 system “Blue Horizon”
 \(\alpha = 24 \text{ us}, \beta = 1/(390 \text{ MB/sec}) \)
 • \(N < 1170 (\sqrt{P}/(\sqrt{P} – 2)) \)
 • For \(P = 16 \), strips are preferable when \(N < 2340 \)
Parallel speedup and efficiency

• 1-D decomposition

\[S_P = \frac{T_1}{T_P} = \frac{16N^2\beta}{16N^2\beta/P + 2(\alpha+8\beta N)} \]
\[E_P = \frac{S_P}{P} = \frac{16N^2\beta}{16N^2\beta + 2P(\alpha+8\beta N)} \]
\[= \frac{1}{1 + (\alpha+8\beta N)P/(8N^2\beta)} \]

• 2-D decomposition

\[S_P = \frac{T_1}{T_P} = \frac{16N^2\beta}{16N^2\beta/P + 4(\alpha+8\beta N/\sqrt{P})} \]
\[E_P = \frac{S_P}{P} = \frac{16N^2\beta}{(16N^2\beta) + 4(\alpha P + 8\beta N\sqrt{P})} \]
\[= \frac{1}{1 + (\alpha P + 8\beta N\sqrt{P})/(4N^2\beta)} \]
Putting these formulas to work

• 1-D decomposition
• Plot E_P as a function of N, varying P as a parameter
 \[E_P = \frac{1}{1 + (\alpha + 8\beta N)P / (8N^2\beta)} \]
• Plot the fraction of time spent communicating
Parallel efficiency

N = 1024

N = 128
Communication fraction

![Communication fraction graph](image-url)

- N = 128
- N = 1024
3D Stencils

- More demanding
 - Large strides
 - Curse of dimensionality
Memory Strides

H. Das, S. Pan, L. Chen

Sam Williams et al.
The curse of dimensionality

- As we move to higher dimensional spaces, communication becomes relatively more costly
 - In 2D: $4N / N^2 = 4/N$
 - In 3D: $6N^2 / N^3 = 6/N$

- A surface to volume effect
 - Communication is proportional to surface area of computation is proportional to the volume
 - Increasing N/P decreases the surface volume ratio, lowering relative communication cost
Surface to volume ratio

1 unit of work
4 units of communication

16 units of work
16 units of communication
Today’s lecture

- Stencil methods
- MPI Implementation
- Under the hood of MPI
- Debugging in MPI programs
- Multigrid
Buffering

• Where does the message go when you send it?
• If there’s not a pending receive for an incoming message, it’s placed in an anonymous system buffer
• When the receive gets posted, the message is moved into the user specified buffer
• Double copying reduces communication performance
• Non-blocking communication can help avoid it
Rendezvous

• When a long message is to be sent, can MPI just send the message?
• For “short” message, it can. This is *eager mode*
• *Eager limit*: longest message that can be sent in eager mode
• See M. Banikazemi et al., IEEE TPDS, 2001, “MPI-LAPI: An Efficient Implementation of MPI for IBM RS/6000 SP Systems”
• For long messages, MPI first sends a scout to get permission to send the message
• This is called *rendezvous mode*
Today’s lecture

- Stencil methods
- MPI Implementation
- Under the hood of MPI
- Debugging in MPI programs
- Multigrid
Debugging tips

• Bugs?! Not in my code!
• The seg fault went away when I added a print statement
• Garbled output
• 2D partitioning is much more involved than 1D
• MPI is a library, not a language
• Gdb not as useful when you have many processes
• Try ddt on Stampede
 https://portal.tacc.utexas.edu/software/ddt
• Parallel print function
Parallel print function

• Problem: how to sort out all the output on the screen
• Many messages say the same thing

 Process 0 is alive!
 Process 1 is alive!

 ...

 Process 15 is alive!

• Compare with

 Processes[0–15] are alive!

• Parallel print facility

 http://www.llnl.gov/CASC/ppf
Summary of capabilities

- Compact format list sets of nodes with common output

 PPF_Print(MPI_COMM_WORLD, "Hello world");
 0–3: Hello world

- %N specifier generates process ID information

 PPF_Print(MPI_COMM_WORLD, "Message from %N\n");
 Message from 0–3

- Lists of nodes

 PPF_Print(MPI_COMM_WORLD,
 (myrank % 2)
 ? "[%N] Hello from the odd numbered nodes!\n"
 : "[%N] Hello from the even numbered nodes!\n")

[0,2] Hello from the even numbered nodes!
[1,3] Hello from the odd numbered nodes!
Practical matters

• Installed in $(PUB)/lib/PPF
• Specify ppf=1 and mpi=1 on the “make” line or in the Makefile
 • Defined in arch.gnu-4.7_c++11.generic
 • Each module that uses the facility must
 #include “ptools_ppf_cpp.h”

• Look in $(PUB)/Examples/MPI/PPF for example programs ppfexample_cpp.C and test_print.c
• Uses MPI_Gather()
• Installed on Bang, will install on Stampede upon request
Today’s lecture

• Stencil methods
• MPI Implementation
• Under the hood of MPI
• Debugging in MPI programs
• Multigrid
Multigrid

- The image smoother converges slowly: $O(n^2)$ iterations for a mesh with n unknowns, $n=m^2$
- Slow numerical communication, by nearest neighbors
- $O(1)$ convergence: multigrid
- Multi-scale
 - Coarsen the mesh, solve a smaller problem in less time
 - Do this recursively
The effects of smoothing on the error

• Let’s express the error in the solution in frequency space
• The smoother suppresses the higher frequency components in just a few steps
The idea behind multigrid

- If we can make low frequencies appear to be high frequencies, we can speed convergence
- Coarsening the mesh uses half as many points, doubling the frequency
- Cancel out the fine mesh errors using coarse mesh information
- Multigrid provides the glue between levels
- Another angle: numerical information communicated at multiple length scales
Smoothing damps high frequency error

Initial error
“Rough”
Lots of high frequency components
Norm = 1.65

Error after 1 Jacobi step
“Smoother”
Fewer high frequency components
Norm = 1.055