Numerical tensor methods and their applications

I.V. Oseledets

7 May 2013
4 lectures,

- 2 May, 08:00 - 10:00: Introduction: ideas, matrix results, history.
- 7 May, 08:00 - 10:00: Novel tensor formats (TT, HT, QTT).
- 8 May, 08:00 - 10:00: Advanced tensor methods (eigenproblems, linear systems).
- 14 May, 08:00 - 10:00: Advanced topics, recent results and open problems.
Previous lecture:
Previous lecture:

- SVD and skeleton decompositions
Previous lecture:
- SVD and skeleton decompositions
- A tensor is a d-way array: $A(i_1, \ldots, i_d)$
Previous lecture:

- SVD and skeleton decompositions
- A tensor is a d-way array: $A(i_1, \ldots, i_d)$
- Key idea: separation of variables
Two classical formats:

- The canonical format
- The Tucker format
The canonical format

\[A(i_1, \ldots, i_d) = \sum_{\alpha=1}^{r} U_1(i_1, \alpha) \ldots U_d(i_d, \alpha) \]

- \textit{dnr} parameters (low!)
- No robust algorithms
- Uniqueness, important as a data model
A(i_1, \ldots, i_d) = \sum_{\alpha_1, \ldots, \alpha_d} G(\alpha_1, \ldots, \alpha_d) U_1(i_1, \alpha_1) \ldots U_d(i_d, \alpha_d)

dnr + r^d parameters (high!)

SVD-based algorithms

No uniqueness
Main question

Can we find something inbetween? (Tucker and canonical)

The tensor format that has:

- No curse of dimensionality
- SVD-based algorithms
Plan of lecture 2

- History of novel formats
- The Tree-Tucker, Tensor Train, Hierarchical Tucker formats
- Their difference
- Concept of Tensor Networks
- Stability and quasioptimality
- Basic arithmetic (with illustration)
- Cross approximation formula (with illustrations)
- QTT-format (part 1)
In 2000-s there was a lot of work done on the canonical/Tucker formats in multilinear algebra:
- Beylkin и Mohlenkamp (2002), first to use as a format
- Hackbusch, Khoromskij, Tyrtyshnikov, Grasedyck
Beginning of 2009, two papers:

- I. V. Oseledets, E. E. Tyrtyshnikov,
 Breaking the curse of dimensionality, or how to use SVD in many dimensions
- W. Hackbusch, S. Kühn, A new scheme for the tensor representation

Two hierarchical schemes:
TT (TT=Tree Tucker) и HT(Hierarchical Tucker)
It was almost immediately found, that Tree-Tucker can be rewritten in a much simpler algebraic way, called Tensor-Train.
In March-April 2009 all the basic arithmetics was obtained for the TT-formats, with similar algorithms obtained for HT by different groups later on, but:

- HT are typically more complex
- There is no explicit advantage in practice
June 2009 года: L. Grasedyck, Hierarchical singular value decomposition of tensors
June 2009 года: O., Tyrtyshnikov, TT-cross approximation of multidimensional arrays - first skeleton decomposition formula in many dimensions.
2010, R. Schneider found that similar things were used in solid state physics (Matrix Product States), as a representation of certain states (but not as a mathematical instruments)

Approaches MCTDH/ML-MCTDH in quantum chemistry can be interpreted as a HT-format.

New mathematical tensor-based framework has emerged
The topic is very “hot” and is full of new challenges.

- Merging of linear algebra and many different areas
- Old and new applications
- Numerical experiments are far ahead of the theoretical results
- Limitations?
Idea: if for matrices everything is good, let us transform tensors into matrices!
Tensors and matrices

By reshaping!

\[(i_1, \ldots, i_d) = (\mathcal{I}, \mathcal{J}),\]

\[\mathcal{I} = (i_1, i_4), \quad \mathcal{J} = (i_2, i_3, i_5).\]

\[A \rightarrow B(\mathcal{I}, \mathcal{J}) - \text{a matrix}\]
Lemma 1

If A has canonical rank r then for any splitting $B = A(I, J)$

$$\text{rank } B \leq r$$
$B = UV^\top$, still exponentially many parameters!

Lemma 2

Let $B = UV^\top$ with full-rank U and V. Then, $U = U(\mathcal{I}, \alpha)$, $V = V(\mathcal{J}, \alpha)$ can be considered as $d_1 + 1$ and $d_2 + 1$ tensors; then these tensors have canonical rank-r representations!
The process can be then applied recursively: We had a 9 dimensional tensor of canonical rank r, splitted into 4 and 5 indices, then replaced it by $5 = 4 + 1$ and $6 = 5 + 1$ dimensional tensors of canonical rank r. We can go on . . .
Theorem: The number of leafs (3-d tensors) is exactly \((d - 2)\)

Complexity is \(O(dnr) + (d - 2)r^3\).
We quickly realized, that the tree is in fact **not needed**, and up to the permutation of the dimensions,

$$A(i_1, \ldots, i_d) = \sum_{\alpha_1, \ldots, \alpha_{d-1}} G_1(i_1, \alpha_1) G_2(\alpha_1, i_2, \alpha_2) \ldots G_d(\alpha_{d-1}, i_d)$$
Tensor train (2)

\[A(i_1, \ldots, i_d) = \sum_{\alpha_1, \ldots, \alpha_{d-1}} G_1(i_1, \alpha_1) G_2(\alpha_1, i_2, \alpha_2) \ldots G_d(\alpha_{d-1}, i_d) \]

I.V. Oseledets
Numerical tensor methods and their applications
Tensor train (3)

The matrices $G_k(i_k)$ have sizes $r_{k-1} \times r_k$, $r_0 = r_d = 1$, the numbers r_k are called **TT-ranks**.
The Hierarchical Tucker format can be treated as sequential application of the Tucker decomposition:

- Compute the Tucker of an $n \times n \times n \times n \times n$ array, get the core $r \times r \times r \times r \times r$
- Select pairs, reshape into a $r^2 \times r^2 \times r^2 \times r$ array
- Compute the Tucker decomposition (again), the factors will be $r_{\text{leaf}} r_{\text{leaf}} r_{\text{father}}$ - the same 3d-tensors
- Do it recursively

The process is described by a binary tree
All these formats can be interpreted as tensor networks:

- Canonical format
- Tucker format
- Linear Tensor Network (LTN) - TT-format
- Tree Tensor Network - HT/format

What about more complex networks?
Multidimensional grids (PEPS-states)
They are not closed!

The multidimensional states can be useful, but we will face all the hazards of the canonical format (again)!
The tensor is said to be in the TT-format, if
\[A(i_1, \ldots, i_d) = G_1(i_1) G_2(i_2) \ldots G_d(i_d), \]
where \(G_k(i_k) \) is a \(r_{k-1} \times r_k \) matrix, \(r_0 = r_d = 1 \)
\(r_k \) are called TT-ranks
\(G_k(i_k) \) (which are in fact \(r_{k-1} \times n_k \times r_k \)) are called cores
TT in a nutshell

- A has canonical rank $r \rightarrow r_k \leq r$
- TT-ranks are matrix ranks, TT-SVD
- All basic arithmetic, linear in d, polynomial in r
- Fast TENSOR ROUNDING
- TT-cross method, exact interpolation formula
- Q(Quantics, Quantized)-TT decomposition — binarization (or tensorization) of vectors, matrices
TT-ranks are matrix ranks

Define unfoldings:

\[A_k = A(i_1 \ldots i_k; i_{k+1} \ldots i_d), \quad n^k \times n^{d-k} \text{ matrix} \]
TT-ranks are matrix ranks

Define unfoldings:

\[A_k = A(i_1 \ldots i_k; i_{k+1} \ldots i_d), \quad n^k \times n^{d-k} \text{ matrix} \]

Theorem: there exists a TT-decomposition with TT-ranks

\[r_k = \text{rank} \ A_k \]
The proof is constructive and gives the TT-SVD algorithm!
TT-ranks are matrix ranks

No exact ranks in practice – stability estimate!

Theorem (Approximation theorem)

If \(A_k = R_k + E_k \), \(\|E_k\| = \varepsilon_k \)

\[
\|A - \text{TT}\|_F \leq \sqrt{\sum_{k=1}^{d-1} \varepsilon_k^2}.
\]
TT-SVD

Suppose, we want to approximate:
\[A(i_1, \ldots, i_d) \approx G_1(i_1)G_2(i_2)G_3(i_3)G_4(i_4) \]

1. \(A_1 \) is an \(n_1 \times (n_2n_3n_4) \) reshape of \(A \).
2. \(U_1, S_1, V_1 = \text{SVD}(A_1), U_1 \) is \(n_1 \times r_1 \) — first core
3. \(A_2 = S_1V_1^* \), \(A_2 \) is \(r_1 \times (n_2n_3n_4) \).
 Reshape it into a \((r_1n_2) \times (n_3n_4) \) matrix
4. Compute its SVD:
 \(U_2, S_2, V_2 = \text{SVD}(A_2) \),
 \(U_2 \) is \((r_1n_2) \times r_2 \) — second core, \(V_2 \) is \(r_2 \times (n_3n_4) \)
5. \(A_3 = S_2V_2^* \),
6. Compute its SVD:
 \(U_3S_3V_3 = \text{SVD}(A_3), U_3 \) is \((r_2n_3) \times r_3 \), \(V_3 \) is \(r_3 \times n_4 \)
Fast and trivial linear algebra

Addition, Hadamard product, scalar product, convolution
All scale linear in d
Fast and trivial linear algebra

\[C(i_1, \ldots, i_d) = A(i_1, \ldots, i_d)B(i_1, \ldots, i_d) \]

\[C_k(i_k) = A_k(i_k) \otimes B_k(i_k), \]

ranks are multiplied
Tensor rounding

A is in the TT-format with suboptimal ranks. How to reapproximate?
Tensor rounding

ε-rounding can be done in $O(dnr^3)$ operations
Everything comes from matrices:

\[A = UV^\top, \quad U \in \mathbb{R}^{n \times R} \quad V \in \mathbb{R}^{m \times R}, \]
Everything comes from matrices:

\[A = UV^\top, \quad U \in \mathbb{R}^{n \times R}, \quad V \in \mathbb{R}^{m \times R}, \]

Rounding

- \(U = Q_u R_u, \ V = Q_v R_v \)
- \(S = R_u R_v^\top \) (is \(R \times R \)), \(r = \text{rank } S \),
- \(S = \hat{U} \Lambda \hat{V}^\top + E, \quad \|E\| \leq \varepsilon \)
- \(A = (Q_u \hat{U}) \Lambda (Q_v \hat{V})^\top \) — SVD.

Complexity: \(\mathcal{O}((n^k + n^{d-k}) R_k^2 + R_k^3) \).
Everything comes from matrices:

\[A = UV^\top, \quad U \in \mathbb{R}^{n \times R}, \quad V \in \mathbb{R}^{m \times R}, \]

Tensor:

Unfolding \(A_k = A(i_1 i_2 \ldots i_k; i_{k+1} \ldots i_d) = U_k V_k^\top \)

\(U_k \in \mathbb{R}^{n^k \times R_k}, \quad V \in \mathbb{R}^{n^{d-k} \times R_k}, \)

QR is not computable in full format
QR of U_k, V_k can be computed in TT-format in $O(dnr^3)$ operations!
How it works

\[U_k(i_1, i_2, \ldots, i_k; \alpha_k) = \sum_{\alpha_1, \ldots, \alpha_{k-1}} G_1(i_1, \alpha_1) G_2(\alpha_1, i_2, \alpha_2) \cdots G_k(\alpha_{k-1}, i_k, \alpha_k) \]

First orthogonalize \(G_1 \):
\[G_1(i_1, \alpha_1) = Q_1(i_1, \beta_1) R(\beta_1, \alpha_1) \]
How it works

\[U_k(i_1, i_2, \ldots, i_k; \alpha_k) = \]
\[\sum_{\beta_1, \ldots, \alpha_{k-1}} Q_1(i_1, \beta_1) G'_2(\beta_1, i_2, \alpha_2) \ldots G_k(\alpha_{k-1}, i_k, \alpha_k) \]

Then orthogonalize \(G'_2(\beta_1 i_2; \alpha_2) \):
\[G'_2(\beta_1 i_2; \alpha_2) = Q_2(\beta_1, i_2, \beta_2) R(\beta_2, \alpha_2) \]

\[U_k(i_1, i_2, \ldots, i_k; \alpha_k) = \]
\[\sum_{\beta_1, \beta_2, \ldots, \alpha_{k-1}} Q_1(i_1, \beta_1) Q_2(\beta_1, i_2, \beta_2) \ldots G_k(\alpha_{k-1}, i_k, \alpha_k) \]
How it works

In the end we have

\[U_k(i_1, i_2, \ldots, i_k; \alpha_k) = \sum_{\beta_1, \beta_2, \ldots, \beta_{k-1}} Q_1(i_1, \beta_1) Q_2(\beta_1, i_2, \beta_2) \ldots Q_k(\beta_{k-1}, i_k, \beta_k) R(\beta_k, \alpha_k) \]

And that is the QR-decomposition.
Cross approximation in d-dimensions

What if the tensor is given as a “black box”?
Cross approximation in d-dimensions

What if the tensor is given as a “black box”? O., Tyrtyshnikov, 2010: TT-cross approximation of multidimensional arrays. You can exactly interpolate rank-r tensor on $O(dnr^2)$ elements.
The idea was simple: make everything a tensor (we have software, we have to use it!)
Let $f(x)$ be a univariate function (say, $f(x) = \sin x$). Let v be a vector of values on a uniform grid with 2^d points.

Transform v into a $2 \times 2 \times \ldots \times 2$ d-dimensional tensor.

Compute TT-decomposition of it!

And this is the QTT-format.
Putting it all together:

Computing the integral

\[\int_0^\infty \frac{\sin x}{dx} = \frac{\pi}{2} \]

Using the rectangular rule.
Lecture 3

- QTT-format (part 2), application to numerical integration
- QTT-Fourier transform and its relation to tensor networks
- QTT-convolution, explicit representation of Laplace-like tensors
- DMRG/AMEN techniques
- Solution of linear systems in the TT-format
- Solution of eigenvalue problems in the TT-format