Lecture 7:
Data Center Networks

CSE 222A: Computer Communication Networks
Alex C. Snoeren

Thanks: Nick Feamster
Lecture 7 Overview

- Project discussion
- Data Centers overview
- “Fat Tree” paper discussion
Cloud Computing

- Elastic resources
 - Expand and contract resources
 - Pay-per-use
 - Infrastructure on demand

- Multi-tenancy
 - Multiple independent users
 - Security and resource isolation
 - Amortize the cost of the (shared) infrastructure

- Flexible service management
 - Resiliency: isolate failure of servers and storage
 - Workload movement: move work to other locations
Cloud Service Models

- **Software as a Service (Saas)**
 - Provider licenses applications to users as a service
 - e.g., customer relationship management, email, …
 - Avoid costs of installation, maintenance, patches, …

- **Platform as a Service (Paas)**
 - Provider offers software platform for building applications
 - e.g., Google’s App-Engine
 - Avoid worrying about scalability of platform

- **Infrastructure as a Service (Iaas)**
 - Provider offers raw computing, storage, and network
 - e.g., Amazon’s Elastic Computing Cloud (EC2)
 - Avoid buying servers and estimating resource needs
Multi-Tier Applications

- Applications consist of tasks
 - Many separate components
 - Running on different machines

- Commodity computers
 - Many general-purpose computers
 - Not one big mainframe
 - Easier scaling

Front end Server

Aggregator

Worker

Worker

Worker

Worker

Worker

Worker

Worker

CSE 222A – Lecture 7: Data Center Networks
Host Virtualization

- Multiple virtual machines on one physical machine
- Applications run unmodified as on real machine
- VM can migrate from one computer to another
VMM Virtual Switches
Top-of-Rack Architecture

- Rack of servers
 - Commodity servers
 - And top-of-rack switch

- Modular design
 - Preconfigured racks
 - Power, network, and storage cabling

- Aggregate to the next level
Extreme Modularity

- Containers

- Many containers
Data Center Challenges

- Traffic load balance
- Support for VM migration
- Achieving bisection bandwidth
- Power savings / Cooling
- Network management (provisioning)
- Security (dealing with multiple tenants)
Data Center Costs

- James Hamilton published basic 2008 breakdown
 - Servers: 45%
 - CPU, memory, disk
 - Infrastructure: 25%
 - UPS, cooling, power distribution
 - Power draw: 15%
 - Electrical utility costs
 - Network: 15%
 - Switches, links, transit
Traditional DC Topology

- Internet
- Layer-3 router

Core

Aggregation

Access

Layer-2 switch

Servers
DC Network Requirements

- Scalability
 - Incremental build out?

- Reliability
 - Loop free forwarding

- VM migration

- Reasonable management burden
 - Humans in the loop?
Traditional Topologies

- Over subscription of links higher up in the topology
- Tradeoff between cost and provisioning
- Single point of failure
Capacity Bottlenecks

~ 200:1

~ 40:1

~ 5:1
Management: L2 vs. L3

- Ethernet switching (layer 2)
 - Cheaper switch equipment
 - Fixed addresses and auto-configuration
 - Seamless mobility, migration, and failover

- IP routing (layer 3)
 - Scalability through hierarchical addressing
 - Efficiency through shortest-path routing
 - Multipath routing through equal-cost multipath

- Data centers often connect layer-2 islands by IP routers
Advantages of Layer 2

- Certain monitoring apps require server with same role to be on the same VLAN
- Using same IP on dual homed servers
- Allows organic growth of server farms
- VM migration is easier
Layer 2 Pods w/L3 Backbone

Key:
- CR = Core Router (L3)
- AR = Access Router (L3)
- S = Ethernet Switch (L2)
- A = Rack of app. servers

~ 1,000 servers/pod == IP subnet
FAT Tree-Based Solution

- An all Layer-3 solution

- Connect end-host together using a “fat-tree” topology
 - Infrastructure consist of cheap devices
 - Each port supports same speed as endhost
 - All devices can transmit at line speed if packets are distributed along existing paths
 - A k-port fat tree can support $k^{3/4}$ hosts
“Fat-Tree” Topology

Pod 0
10.0.1.1
10.0.1.2
10.0.2.1

Pod 1
10.0.1.1
10.0.1.2

Pod 2
10.2.0.1
10.2.0.2
10.2.0.3
10.2.2.1

Pod 3
10.2.0.1
10.2.0.2
10.2.0.3

Core
Aggregation
Edge
Fat-Tree Challenges

- Layer 3 will only use one of the existing equal cost paths
- Packet re-ordering occurs if layer 3 blindly takes advantage of path diversity
 - E.g., ECMP
Modified Fat Tree

- Enforce special addressing scheme in DC
 - Allows host attached to same switch to route only through switch
 - Allows inter-pod traffic to stay within pod
 - unused.PodNumber.switchnumber.Endhost

- Use two level look-ups to distribute traffic and maintain packet ordering.
Two-Level Lookups

- First level is prefix lookup
 - Used to route down the topology to endhost

- Second level is a suffix lookup
 - Used to route up towards core
 - Diffuses and spreads out traffic
 - Maintains packet ordering by using the same ports for the same endhost

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Output port</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.0.0/24</td>
<td>0</td>
</tr>
<tr>
<td>10.2.1.0/24</td>
<td>1</td>
</tr>
<tr>
<td>0.0.0.0/0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Output port</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.2/8</td>
<td>2</td>
</tr>
<tr>
<td>0.0.0.3/8</td>
<td>3</td>
</tr>
</tbody>
</table>
Diffusion Optimizations

- Flow classification
 - Eliminates local congestion
 - Assign to traffic to ports on a per-flow basis instead of a per-host basis

- Flow scheduling
 - Eliminates global congestion
 - Prevent long lived flows from sharing the same links
 - Assign long lived flows to different links
Discussion

- VM mobility
- Data center build out
- Internet connectivity
- Address space allocation
 - Doing flow placement anyway?
For Next Class…

● Read and review PortLand paper

● Work on project proposals
 ● Details available on the course Web page