Lecture 6:
Software Defined Networks

CSE 222A: Computer Communication Networks
Alex C. Snoeren

Thanks: Nick McKeown, Jeremy Stribling, Kai & Lin
Lecture 6 Overview

- Project discussion
- Software Defined Networking overview
- Onix discussion
Evolution of Computing

Specialized Applications

Specialized Operating System

Specialized Hardware

Open Interface

Windows (OS) or Linux or MacOS

Microprocessor

CSE 222A – Lecture 6: Software Defined Networks
Evolution of Networking?

Specialized Features
Specialized Control Plane
Specialized Hardware

App

Control Plane
or
Open Interface
or
Control Plane

Open Interface

Merchant Switching Chips

CSE 222A – Lecture 6: Software Defined Networks
Software Defined Networking

Abstract Network View

Network Virtualization

Global Network View

Network OS

Packet Forwarding

Packet Forwarding

Packet Forwarding

Packet Forwarding

CSE 222A – Lecture 6: Software Defined Networks
OpenFlow

“If header = x, send to port 4”
“If header = y, overwrite header with z, send to ports 5,6”
“If header = ?, send to me”
Basic OF Operations

- Match arbitrary bits in headers:
 - Match on any header, or new header
 - Allows any flow granularity

<table>
<thead>
<tr>
<th>Header</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match: 1000x01xx0101001x</td>
<td></td>
</tr>
</tbody>
</table>

- Action
 - Forward to port(s), drop, send to controller
 - Overwrite header with mask, push or pop
 - Forward at specific bit-rate
What is a Network OS?

- ONIX provides abstractions for network management

- Basic functionalities:
 - State distribution primitives between controllers and network elements.
 - Virtualized network elements

- A global view & control of the network
 - Very different from Active Networking vision (node local)
Onix Architecture

Server 1

Network Control Logic

NIB

Switch Import / Export

Distribution I / E

Server N

Network Control Logic

NIB

Distribution I / E

Switch Import / Export

Management Connectivity Network Infrastructure

Managed Physical Network Infrastructure
Design Requirements

- **Generality**: Support a wide range of network management applications
- **Scalability**: No inherent limitations due to the platform
- **Reliability**: Graceful failure handling
- **Performance**: Sufficient performance
Onix API

- Developers program against a network graph
- Nodes represent physical network entities
Network Information Base

- The NIB is the focal point of the system
 - State for applications to access
 - External state changes imported into it
 - Local state changes exported from it
Scalability

- Physical controller becomes a bottleneck:
 - Memory: to keep NIB
 - CPU and bandwidth: to process events

- This is a classic distributed systems problem
 - Partitioning
 - Aggregation
Partitioning For Scale

- Multiple dimensions available to applications:
 - Onix instances with different computations tasks
 - Onix instances have only subsets of the NIB
 - Switches connect to a subset of Onix instances
Reduce fidelity of information before disseminating within the cluster.
Aggregating for Scale

- Reduce fidelity of information before disseminating within the cluster
Consistency

- Onix provides two storage options
 - Replicated transactions (SQL) storage
 - One-hop memory-based DHT

- Do we need strong consistency for forwarding state between the controller and routers?

- Do we need strong consistency for NIB stored in controllers?

- Is it reasonable to ask applications for consistency preference and resolving conflicts?
Reliability

- **Network Element & Link Failures**: Applications' responsibility

- **Connectivity Infrastructure Failures**: Assumed reliable

- **Onix Failures**: Onix provides distributed coordination facilities provided for app failover
Discussion

- What are the security implications of Onix?

- Is Onix flexible and general enough for networking management?

- Are there applications you can run on a centralized network but not on a distributed one?
For Next Class…

- Read and review Vahdat’s Fat Tree paper
- Submit project groups by Friday morning
 - Email to Bhanu group members & idea(s)