Lecture 18: Mesh Networking

CSE 222A: Computer Communication Networks
Alex C. Snoeren

Thanks: Sanjit Biswas, Lili Qiu
Lecture 18 Overview

- Wireless mesh networks
- ExOR
MIT Roofnet

- Dense 802.11-based mesh
- Goal is high-throughput and capacity
Multi-hop routing

- Identify a route, forward over links
- Abstract radio to look like a wired link

CSE 222A – Lecture 18: Mesh Networking
Radios aren’t wires

- Every packet is broadcast
- Reception is probabilistic
- Decide who forwards after reception
- Goal: only closest receiver should forward
- Challenge: agree efficiently and avoid duplicate transmissions
Example scenarios

- Traditional routing: \(\frac{1}{0.25} + 1 = 5 \) tx
- ExOR: \(\frac{1}{1 - (1 - 0.25)^4} + 1 = 2.5 \) transmissions
- Assumes independent losses
Example scenarios

- Best traditional route over 50% hops: $3^{(1/0.5)} = 6$ tx
- Throughput $\approx \frac{1}{\# \text{ transmissions}}$
- ExOR exploits lucky long receptions: 4 transmissions
- Assumes probability falls off gradually with distance
Issues to Address

- What we want: an effective protocol with low overhead
- How often should ExOR run?
 - Per packet is expensive
 - Use batches
- Who should participate the forwarding?
 - Too many participants cause large overhead
- When should each participant forward?
 - Avoid simultaneous transmissions
- What should each participant forward?
 - Avoid duplicate transmissions
Who should participate?

- A background process collects ETX information via periodic link-state flooding.

- The source chooses the participants (forwarder list) using ETX-like metric.
 - Only consider forward delivery rate
 - Why?
 - The source runs a simulation and selects only the nodes which transmit at least 10% of the total transmission in a batch.
When to forward?

- Forwarders are prioritized by ETX-like metric to the destination
- The highest priority forwarder transmits when the batch ends
- The remaining forwarders transmit in prioritized order
- Question: How does each forwarder know it is its turn to transmit?
 - Assume other higher priority nodes send for five packet durations if not hearing anything from them
ExOR batching

- Source estimates ETX between each node and the destination
- Source decides on a list of forwarders and prioritizes the list. Let the list be (dst, N4, N3, N2, N1)
- Node closest to the dst sends the overheard packet first
 - Other nodes listen, send remaining packets in turn
Which packets: Batch maps

- Batch map indicates, for each packet in a batch, the highest-priority node known to have received a copy of that packet.

2nd round Tx: 3, 6
Batch map: 13032012

1st round Tx: 1, 2, 3, 4, 5, 6, 7, 8
Batch map: 13032012

Rx: 2, 5, 8 Tx: 5, 8
Batch map: 03032002

Forwarder list:
N3(dst), N2, N1, N0 (src)

Rx: 2, 4 Tx: batch map only
Batch map: 03030000

CSE 222A – Lecture 18: Mesh Networking
End Game

- A node stops sending the remaining packets in the batch if its batch map indicates over 90% of this batch has been received by higher priority nodes.

- The remaining packets transferred with traditional routing.
Example

Forwarder list: N24 (dst), N20, N18, N11, N8, N17, N13, N5 (src)
Using ExOR with TCP

- Batching requires more packets than typical TCP window
Evaluation on Roofnet

1 kilometer
Evaluation setup

- 65 Node pairs
- 1.0-MB file transfer
- 1 Mbit/s 802.11 bit rate
- 1-KB packets

<table>
<thead>
<tr>
<th>Traditional Routing</th>
<th>ExOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11 unicast with link-level retransmissions</td>
<td>802.11 broadcasts</td>
</tr>
<tr>
<td>Hop-by-hop batching</td>
<td>100 packet batch size</td>
</tr>
<tr>
<td>UDP, sending as MAC allows</td>
<td></td>
</tr>
</tbody>
</table>
Throughput improves

- Median throughputs: 240 Kbits/sec for ExOR, 121 Kbits/sec for Traditional
25 Highest throughput pairs

<table>
<thead>
<tr>
<th>Node Pair</th>
<th>Throughput (Kbits/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>800</td>
<td>1000</td>
</tr>
</tbody>
</table>

Traditional Routing

- **1 Traditional Hop**: 1.14x
- **2 Traditional Hops**: 1.7x
- **3 Traditional Hops**: 2.3x

ExOR

- **1 Traditional Hop**: 1.14x
- **2 Traditional Hops**: 1.7x
- **3 Traditional Hops**: 2.3x

Throughput (Kbits/sec)

- **Throughput**
- **0**
- **200**
- **400**
- **600**
- **800**
- **1000**

Node Pair

- **ExOR**
- **Traditional Routing**

CSE 222A – Lecture 18: Mesh Networking
25 Lowest throughput pairs

Node Pair

4 Traditional Hops

3.3x

Throughput (Kbits/sec)

ExOR
Traditional Routing

Longer Routes

Node Pair

CSE 222A – Lecture 18: Mesh Networking
ExOR uses links in parallel

Traditional Routing
3 forwarders
4 links

ExOR
7 forwarders
18 links
ExOR moves packets farther

- ExOR average: 422 meters/transmission
- Traditional Routing average: 205 meters/tx

58% of Traditional Routing transmissions
25% of ExOR transmissions
For Next Class…

- Read and review SloMo paper
- Start reviewing for quiz next Thursday