Lecture 13:
Traffic Engineering

CSE 222A: Computer Communication Networks
Alex C. Snoeren

Thanks: Mike Freedman, Nick Feamster
Lecture 13 Overview

- Evolution of routing in the ARPAnet
- Today's TE: Adjusting edge weights
- Dealing with multiple paths
- Multihoming
Do IP Networks Manage Themselves?

- In some sense, yes:
 - TCP senders send less traffic during congestion
 - Routing protocols adapt to topology changes
- But, does the network run *efficiently*?
 - Congested link when idle paths exist?
 - High-delay path when a low-delay path exists?
- How should routing adapt to the traffic?
 - Avoiding congested links in the network
 - Satisfying application requirements (e.g., delay)
- ... essential questions of traffic engineering
ARPAnet Routing (1969)

- **Routing**
 - Shortest-path routing based on link metrics; distance vector

- **Metrics**
 - *Instantaneous* queue length plus a constant
 - Each node updates distance computation periodically
Problems With the Algorithm

- Instantaneous queue length
 - Poor indicator of expected delay
 - Fluctuates widely, even at low traffic levels
 - Leading to routing oscillations

- Distance-vector routing
 - Transient loops during (slow) convergence
 - Triggered by link weight changes, not just failures

- Protocol overhead
 - Frequent dissemination of link metric changes
 - Leading to high overhead in larger topologies
New ARPAnet Routing (1979)

- Averaging of the link metric over time
 - Old: Instantaneous delay fluctuates a lot
 - New: Averaging reduces the fluctuations

- Link-state protocol
 - Old: Distance-vector path computation leads to loops
 - New: Link-state protocol where each router computes shortest paths based on the complete topology

- Reduce frequency of updates
 - Old: Sending updates on each change is too much
 - New: Send updates if change passes a threshold
Performance of New Algorithm

- **Light load**
 - Delay dominated by the constant part (transmission delay and propagation delay)

- **Medium load**
 - Queuing delay is no longer negligible on all links
 - Moderate traffic shifts to avoid congestion

- **Heavy load**
 - *Very* high metrics on congested links
 - Busy links look bad to *all* of the routers
 - All routers avoid the busy links
 - Routers may send packets on longer paths
Over-Reacting to Congestion

- Routers make decisions based on old information
 - Propagation delay in flooding link metrics
 - Thresholds applied to limit number of updates
- Old information leads to bad decisions
 - All routers avoid the congested links
 - ... leading to congestion on other links
 - ... and the whole thing repeats

“SigAlert on the 5” on radio triggers back-up in Del Mar
Newer ARPAnet Metric (1987)

- Prevent over-reacting
 - Shed traffic from a congested link gradually
 - Starting with alternate paths that are just slightly longer
 - Through weighted average in computing the metric, and limits on the change from one period to the next

- Limit path length
 - Bound the value of the link metric
 - “This link is busy enough to go two extra hops”

- New algorithm
 - New way of computing the link weights
 - No change to link-state routing or shortest-path algorithm
Today: “Static” Link Weights

- Routers flood information to learn topology
 - Determine “next hop” to reach other routers…
 - Compute shortest paths based on link weights

- Link weights configured by network operator
Setting the Link Weights

- How to set the weights
 - Inversely proportional to link capacity?
 - Proportional to propagation delay?
 - Network-wide optimization based on traffic?
Measure, Model, and Control

Network-wide “what if” model

Topology/Configuration

Offered traffic

Changes to the network

Operational network

CSE 222A – Lecture 13: Traffic Engineering
Key Ingredients

● Measurement
 - Topology: monitoring of the routing protocols
 - Traffic matrix: passive traffic measurement

● Network-wide models
 - Representations of topology and traffic
 - “What-if” models of shortest-path routing

● Network optimization
 - Efficient algorithms to find good configurations
 - Operational experience to identify constraints
Optimization Problem

- **Input:** graph $G(R,L)$
 - R is the set of routers
 - L is the set of unidirectional links
 - c_l is the capacity of link l

- **Input:** traffic matrix
 - $M_{i,j}$ is traffic load from router i to j

- **Output:** setting of the link weights
 - w_l is weight on unidirectional link l
 - $P_{i,j,l}$ is fraction of traffic from i to j traversing link l
Equal-Cost Multipath (ECMP)

Values of $P_{i,j,l}$
Objective Function

- Computing the link utilization
 - Link load: \(u_l = \sum_{i,j} M_{i,j} P_{i,j,l} \)
 - Utilization: \(u_l / c_l \)

- Objective functions
 - \(\min(\max_l (u_l/c_l)) \)
 - \(\min(\sum F(u_l/c_l)) \)
Complexity of Optimization

- NP-complete optimization problem
 - No efficient algorithm to find the link weights
 - Even for simple objective functions
 - Have to resort to searching through weight settings

- Clearly suboptimal, but effective in practice
 - Fast computation of the link weights
 - Good performance, compared to “optimal” solution
Operational Realities

- Minimize number of changes to the network
 - Changing just 1 or 2 link weights is often enough

- Tolerate failure of network equipment
 - Weights settings usually remain good after failure
 - … or can be fixed by changing one or two weights

- Limit dependence on measurement accuracy
 - Good weights remain good, despite random noise

- Limit frequency of changes to the weights
 - Joint optimization for day & night traffic matrices
Need for Inter-domain TE

- Avoid congested edge links
 - Links between domains are common points of congestion in the Internet

- Exploit upgraded link capacity
 - Operators frequently install higher-bandwidth links
 - Aim to exploit the additional capacity

- Comply with terms of peering agreement
 - For example, enforce ratio of in/out traffic on peering link
BGP Traffic Engineering

- Predict effects of changes to import policies
 - Inputs: routing, traffic, and configuration data
 - Outputs: flow of traffic through the network

![Diagram showing BGP routing model and its inputs and outputs.]

- Topology
- BGP policy configuration
- BGP routes
- Offered traffic

Flow of traffic through the network
Goals for Interdomain TE

- Predictable traffic flow changes
- Limiting the influence of neighboring domains
 - Check for consistent advertisements
 - Use BGP policies that limit the influence of neighbors
- Reduce the overhead of routing changes
 - Focus on small number of prefixes
Predictable Traffic Changes

- Avoid globally visible changes
 - Don’t do things that would result in changes to routing decisions from a neighboring AS
 - For example, make adjustments for prefixes that are only advertised via one neighbor AS
Reduce Overhead of Changes

- Group related prefixes
 - Don’t explore all combinations of prefixes
 - Simplify configuration changes
 - **Routing choices**: groups routes that have the same AS paths (lots of different granularities to choose from)

- Focus on the (small) fraction of prefixes that carry the majority of the traffic
 - E.g., top 10% of origin ASes are responsible for about 82% of outbound traffic
Multiple Paths

- Establish multiple paths in advance
 - Good use of bandwidth, withstand failures
- Disseminate link-congestion information
 - Flood thru network, piggyback on data, direct to controller
Adjust Traffic Splitting

- Source router adjusts the traffic
 - Changing traffic fraction, e.g. based on congestion
 - Often use hash-based splitting to prevent packet reordering within a flow

CSE 222A – Lecture 13: Traffic Engineering
Multi-Homing

- Reliability
 - Reduced fate sharing
 - Survive ISP failure
- Performance
 - Multiple paths
 - Select the best
- Financial
 - Leverage through competition
 - Game 95th-percentile billing model

Stub: an Autonomous System that does not provide transit
Outbound Traffic: Pick a BGP Route

- Easier to control than inbound traffic
 - IP routing is destination based
 - Sender determines where the packets go
- Control only by selecting the next hop
 - Border router can pick the next-hop AS
 - Cannot control selection of the entire path
Inbound Traffic: Influencing Others

- Harder to control than outbound traffic
 - Sender determines where the packets go
- Control only by influencing others’ decisions
 - Static configuration of the providers
 - BGP route attributes sent by the stub
 - Selective advertising of destination prefixes
Inbound Traffic: Multiple Addresses

- Multiple external addresses for a service
 - One IP address for each entry point
- Use DNS to adjust mapping of name to address
 - Give different answers to different clients
 - Adjust over time to performance, cost, traffic, etc.

Provider 1

12.34.1.0/24

5.6.7.0/24

Provider 2

12.34.1.2

5.6.7.8

12.34.1.0/24
For Next Class…

- Read and review XCP paper
- Project checkpoint due Thursday
 - Email 1-2 page summary to Bhanu
Limitations of Shortest-Path Routing

- Sub-optimal traffic engineering
 - Restricted to paths expressible as link weights
- Limited use of multiple paths
 - Only equal-cost multi-path, with even splitting
- Disruptions when changing the link weights
 - Transient packet loss and delay, and out-of-order
- Slow adaptation to congestion
 - Network-wide re-optimization and configuration
- Overhead of the management system
 - Collecting measurements and performing optimization
Explicit End-to-End Paths

- Establish end-to-end path in advance
 - Learn the topology (as in link-state routing)
 - End host or router computes and signals a path
- Routers supports virtual circuits
 - Signaling: install entry for each circuit at each hop
 - Forwarding: look up the circuit id in the table

Used in MPLS with RSVP
Label Swapping

- Problem: using VC ID along the whole path
 - Each virtual circuit consumes a unique ID
 - Starts to use up all of the ID space in the network

- Label swapping
 - Map the VC ID to a new value at each hop
 - Table has old ID, next link, and new ID
 - Allows reuse of the IDs at different links
Multi-Protocol Label Switching

- Multi-Protocol
 - Encapsulate a data packet
 - Could be IP, or some other protocol (e.g., IPX)
 - Put an MPLS header in front of the packet
 - Actually, can even build a stack of labels...

- Label Switching
 - MPLS header includes a label
 - Label switching between MPLS-capable routers
Pushing, Popping, and Swapping

- **Pushing**: add the initial “in” label
- **Swapping**: map “in” label to “out” label
- **Popping**: remove the “out” label
Constrained Shortest Path First

- Run a link-state routing protocol
 - Configurable link weights
 - Plus other metrics like available bandwidth

- Constrained shortest-path computation
 - Prune unwanted links (e.g., not enough bandwidth)
 - Compute shortest path on the remaining graph

- Signal along the path
 - Source router sends a message to pin the path to destination
 - Revisit decisions periodically, in case better options exist
Choosing Outbound Traffic

- Primary and Backup
 - Single policy for all prefixes
 » High local-pref for session to primary provider
 » Low local-pref for session to backup provider
 - Outcome of BGP decision process
 » Choose the primary provider whenever possible
 » Use the backup provider when necessary

- Load Balancing: Selectively use each provider
 - Assign local-pref across destination prefixes
 - Change the local-pref assignments over time
Inbound Traffic: Primary and Backup

- Ask your provider to be a backup
 - Provider violates “prefer customer” policy
 - … by assigning lower local-pref to customer
 - Backup link is only used if the primary link fails

Diagram

- Provider 1
 - 12.34.158.0/24
 - local-pref=90

- Provider 2
 - local-pref=100

- Traffic

- 12.34.158.0/24
Inbound Traffic: AS Prepending

- Make one path look longer
 - Advertise short path one way
 - ... and longer path another
 - In the hope of influencing choices
 - But, how much prepending to do?

```
12.34.158.024: (3)
```

```
12.34.158.024: (3, 3, 3)
```

CSE 222A – Lecture 13: Traffic Engineering
Inbound Traffic: Selective Advertising

- When you don’t have enough prefixes…
 - Advertise one subnet to each provider
 - Advertise the supernet to both providers
 - Traffic splits due to the longest-prefix match
 - Supernet ensures backup connectivity after failure

Causes unwanted increase in global routing tables