Lecture 1:
Introduction to Digital Logic Design

CSE 140: Components and Design Techniques for Digital Systems

Diba Mirza
Dept. of Computer Science and Engineering
University of California, San Diego
What is inside your processor?
Logistics: Resources

Class **website**: http://cseweb.ucsd.edu/classes/wi15/cse140-ab/index.html

- *Approx.* Syllabus
- Detailed schedule
- Readings
- Assignments
- Grading policy
- HW submissions (TED)
- Content/announcements through Piazza
- Grades will be posted on Grade Source
Logistics: Course Components

Grading (grade on style, completeness and correctness)

• 10% Homework
• 30% Midterm (Best 1 of 2)
• 20% Quiz, iclicker based (Best 4 of 5) (Dates will be announced in advance via Piazza)
• 40% Final Exam

• If more than 60% of the class fill out CAPE evaluations, lowest homework and quiz score will be dropped
• Standard scale for assigning letter grades: 90-100 = A-/A/A+; 80-89.9=B-/B/B+, 50-79.9=C-/C/C+, 40-49.9=D, less than 40=F. Plusses and minuses will be given at the instructor's discretion.
Logistics: Textbooks

Required text:

Other references:

• [Lang]: “Digital Systems and Hardware/Firmware Algorithms” by Milos D. Ercegovac and Tomas Lang
In class we will use Clickers!

- Lets you vote on multiple choice questions in real time.
Information about TAs

*TAs and tutors shared between sections A and B

1. Vineel Pratap Konduru
2. Anup Chenthamarakshan
3. Pallavi Agarwal
4. Anand Anand
5. Michael Chin
6. Jennifer He
7. Ben Martin
8. Ryan McClure
9. Alvin See
10. Nan Shu
11. Harvey Yu

Office hours and emails available on the course website (Check weekly)
Course Problems...Cheating

• What is cheating?
 – Studying together in groups is encouraged
 – Turned-in work must be completely your own.
 – Copying someone else’s solution on a HW or exam is cheating
 – Both “giver” and “receiver” are equally culpable

• Cheating on HW/ exams: in most cases, F in the course.
• Any instance of cheating will be referred to Academic Integrity Office
Motivation

• Microelectronic technologies have revolutionized our world: cell phones, internet, rapid advances in medicine, etc.

• The semiconductor industry has grown from $21 billion in 1985 to $268 billion in 2007.
The Digital Revolution

Integrated Circuit: Many digital operations on the same material

Vacuum tubes

ENIAC

WWII Stored Program Model

Integrated Circuit

1949

1965

Exponential Growth of Computation

Moore’s Law
Building complex circuits

Transistor

<table>
<thead>
<tr>
<th>B</th>
<th>A</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Building complex circuits

Input

Memory File

Pointer

Select

Mux

ALU

Memory Register

Conditions

Transistor Switches

A

B

R

T1

T2

+Vcc

0

1

0

1

0

1

0

1

0

1

0

1

Q = A + B
Robert Noyce, 1927 - 1990

• Nicknamed “Mayor of Silicon Valley”
• Cofounded Fairchild Semiconductor in 1957
• Cofounded Intel in 1968
• Co-invented the integrated circuit
Gordon Moore

• Cofounded Intel in 1968 with Robert Noyce.
• Moore’s Law: the number of transistors on a computer chip doubles every 1.5 years (observed in 1965)
• Since 1975, transistor counts have doubled every two years.
Principle of Abstraction

Abstraction: Hiding details when they aren’t important
Combinational Logic vs Sequential Network

Combinational logic:

\[y_i = f_i(x_1, ..., x_n) \]

Sequential Networks

1. **Memory**

2. **Time Steps (Clock)**

\[y_i^t = f_i(x_1^t, ..., x_n^t, s_1^t, ..., s_m^t) \]

\[S_{i}^{t+1} = g_i(x_1^t, ..., x_n^t, s_1^t, ..., s_m^t) \]
Scope: Overall Picture of CS140

Data Path Subsystem

- Input
- Memory File
- Pointer
- Select
- Mux
- ALU
- Memory
- Register
- Conditions

Control Subsystem

- Conditions
- Control
- Sequential machine
- CLK: Synchronizing Clock
Scope

• The purpose of this course is that we:
 – Learn the principles of digital design
 – Learn to systematically debug increasingly complex designs
 – Design and build digital systems
 – Learn what’s under the hood of an electronic component
We will cover four major things in this course:

- Combinational Logic (Harris-Chap 2)
- Sequential Networks (Harris-Chap 3)
- Standard Modules (Harris-Chap 5)
- System Design (Harris-Chap 4, 6-8)
Scope

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Building Blocks</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinational Logic</td>
<td>AND, OR, NOT, XOR</td>
<td>Boolean Algebra</td>
</tr>
<tr>
<td>Sequential Network</td>
<td>AND, OR, NOT, FF</td>
<td>Finite State Machine</td>
</tr>
<tr>
<td>Standard Modules</td>
<td>Operators, Interconnects, Memory</td>
<td>Arithmetics, Universal Logic</td>
</tr>
<tr>
<td>System Design</td>
<td>Data Paths, Control Paths</td>
<td>Methodologies</td>
</tr>
</tbody>
</table>