CSE 260
Lecture 19

Parallel Programming Languages
Announcements

• Thursday’s office hours are cancelled
• Office hours on Weds 2p to 4pm
• Jing will hold OH, too, see Moodle
Today’s lecture

• Parallel Programming Languages
 ◆ Cilk
 ◆ X10
Dynamic parallelism

• How to support dynamic creation of parallelism, while hiding the details
• Dynamic parallelism is much harder to manage than static parallelism
 ♦ How to keep the processors equally busy?
 ♦ How to avoid excessive overhead costs?
Managing application complexity

- Focus on thread-based parallelism
- Threads communicate anonymously
 - Correctness and synchronization
 - Workload distribution
- Scalability
- Task granularity
An alternative

- Let’s think of a computation in terms of a graph, more precisely, a DAG
- Nodes denote computation, edges data dependence
CILK

• CILK is a programming language that supports a constrained model of thread-based parallelism with guarantees about performance
• Useful in implementing divide and conquer algorithms
• See http://supertech.lcs.mit.edu/cilk
• Cilk Plus: an extension to C and C++
 ✷ Supported by Intel compilers and GCC 4.7
A first CILK program

• fib() is called from a dynamically spawned thread
• Non-blocking call
• Calls to fib() execute concurrently
• Parent continues until it reaches a sync barrier, and waits for children to return

```cilk
int fib (int n)
{
    if (n < 2) return n;
    else {
        int x, y;
        x = spawn fib (n-1);
        y = spawn fib (n-2);
        sync;
        return (x+y);
    }
}
```
cilk int fib (int n) {
 if (n < 2) return n;
 else {
 int x, y;
 x = spawn fib (n-1);
 y = spawn fib (n-2);
 sync;
 return (x+y);
 }
}

Spawn, continue and return edges
Performance Metrics

- Define *work* as the total time to execute the entire computation on one processor (T_1).
- **Critical path**: the longest time to execute the threads along any dependence path (T_∞).
- Assume P processors.
- Define $T_P = \text{time on } P \text{ processors}$.
Lower bounds on performance

• \(T_P \geq T_1 / P \)
 ❖ In one step, \(P \) processors can do at most \(P \) units of work
 ❖ May not be true in some search problems

• \(T_P \geq T_\infty \)
 ❖ In one step, \(P \) processors can do no more work than an infinite number of processors can

• \(T_1 / T_P = \text{speedup} \), cannot be superlinear, why?
• \(T_1 / T_\infty = \text{available parallelism} \)
 = average work available along every step along the critical path
Performance of Fibonacci

Work = 17
Critical path: 8
Parallelism: 2.125
A greedy scheduler

- In each step, perform as much work as possible at most P threads
- A thread is *ready* if all predecessors have completed
- The step is *complete* if $\geq P$ threads are ready: at most T_1/P complete steps
- Else it is *incomplete* at most T_∞ incomplete steps
Theorem

- Theorem due to Graham and Brent
 A greedy scheduler executes a computation with work T_1 and critical-path length T_∞ in time

 $$T_P \leq T_1 / P + T_\infty$$

- Informal proof (Demmel)
 A processor is either working or stealing. The total time all processors spend working is T_1. Each steal has a $1/P$ chance of reducing the span by 1. Thus, the expected cost of all steals is $O(PT_\infty)$. Since there are P processors, the expected time is

 $$(T_1 + O(PT_\infty))/P = T_1/P + O(T_\infty) \blacksquare$$

- Corollary: any greedy scheduler is optimal to within a factor of 2
Performance

• CILK’s scheduler is provably optimal
 \[T_P \leq T_1 /P + O(T_\infty) \]

• Near perfect speedup when \(P << T_1 /T_\infty \)

• Empirically \(T_P \approx c_1 T_1 /P + c_\infty T_\infty \)
 \(c_1 \approx 1.07, c_\infty \approx 1.04 \), provided \(T_1 /T_\infty > 10P \)

• \(T_P \geq \text{Max}(T_1 /P, T_\infty) \)
 ◆ The critical path is a stronger lower bound on \(T_P \) exceeds the average parallelism \(T_1 /T_\infty \)
 ◆ Otherwise, \(T_1 /P \) is the stronger bound

• Depends on the ability to have good scheduler
Cilk’s work stealing scheduler

- When a processor runs out of work it steals a thread from a *victim* taken at random
- The *thief* takes the shallowest thread from the top of the victim’s queue. Why?
 - Low overhead when all are busy, mostly incurred by thief
 - Little effect on T_1/P term
Matrix multiplication

- HPC Challenge (2006)
- Uses divide and conquer algorithm, performs 8 matrix multiplications on \(\frac{n}{2} \times \frac{n}{2} \) matrices and 1 matrix addition

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
=
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\times
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
=
\begin{pmatrix}
A_{11}B_{11} & A_{11}B_{12} \\
A_{21}B_{11} & A_{21}B_{12}
\end{pmatrix}
+
\begin{pmatrix}
A_{12}B_{21} & A_{12}B_{22} \\
A_{22}B_{21} & A_{22}B_{22}
\end{pmatrix}
\]
Matrix multiply in Cilk

 float *T Cilk_alloca(n*n*sizeof(float));
 spawn MM(C11,A11,B11,n/2)
 spawn MM(C12,A11,B12,n/2)
 ...
 spawn MM(T11,A12,B21,n/2)
 ...
 sync
 spawn Add (C,T,n)
 sync;
}

T_1 = \Theta(n^3)
T_\infty = \Theta(lg^2 n)
Parallelism = n^3 / lg^2 n

Cilk Void Add(*C, *T, n){
 spawn Add(C11,T11,n/2)
 spawn Add(C12,T12,n/2)
 spawn Add(C21,T21,n/2)
 spawn Add(C22,T22,n/2)
 sync;
}

T_1 = \Theta(n^2)
T_\infty = \Theta(lg n)
Today’s lecture

• Parallel Programming Languages
 - Cilk
 - X10