CSE 260
Lecture 18

Irregular Problems: sparse matrices
NUMA architecture and programming
Announcements
Today’s lecture

- Irregular Problems
 - Sparse matrices
- NUMA
Classifying application domains – Colella’s “7 Dwarfs”

- Classify applications according to a pattern of data access and operations on the data: important in HPC
- Structured grids
 - Image processing, simulations
- Dense linear algebra:
 - Gaussian elimination, SVD, many others
- N-body methods
 - Sparse linear algebra
 - Unstructured Grids
 - Spectral methods (FFT)
 - Monte Carlo
Sparse Matrices

- A matrix where we employ knowledge about the location of the non-zeroes
- Consider Jacobi's method with a 5-point stencil

\[u'[i,j] = \frac{u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] - h^2 f[i,j]}{4} \]
Web connectivity Matrix: 1M x 1M

1M x 1M submatrix of the web connectivity graph, constructed from an archive at the Stanford WebBase

3 non-zeroes/row
 Dense: $2^{20} \times 2^{20} = 2^{40}$
 $= 1024$ Gwords

Sparse: $(3/2^{20}) \times 2^{40}$
 $= 3$ Mwords

Sparse representation saves a factor of 1 million in storage
Circuit Simulation

Motorola Circuit

170,998\(^2\)
958,936 nonzeros
.003% nonzeros
5.6 nonzeros/row

www.cise.ufl.edu/research/sparse/matrices/Hamm/scircuit.html
Generating sparse matrices from unstructured grids

- In many applications of sparse matrices, we generate the matrix from a large data input file.
- “Unstructured” meshes, e.g. finite element method.
- We can apply direct mesh updates, but more common to generate the equivalent sparse matrix.
Fill in

- When factorizing (e.g. LU) a sparse matrix, *fill in* can occur: a zero becomes a non-zero
- Computation & storage costs
- Matrix reordering can reduce fill in
Sparse Matrix Vector Multiplication

• Important kernel used in linear algebra
• Assume $x[]$ fits in memory of 1 processor

 $y[i] += A[i,j] \times x[j]$

• Many formats, common format for CPUs is Compressed Sparse Row (CSR)

Jim Demmel
Sparse matrix vector multiply kernel

// y[i] += A[i,j] × x[j]
#pragma parallel for schedule (dynamic, chunk)
for i = 0 : N-1 // rows
 i0 = ptr[i]
 i1 = ptr[i+1] − 1
 for j = i0 : i1 // cols
 end j
 end i
Today’s lecture

- Sparse matrices
- **NUMA**
- Example NUMA Systems
 - Cray XE-6
 - SGI
- Performance programming
NUMA Architectures

- The address space is global to all processors, but memory is physically distributed
- Point-to-point messages manage coherence
- A directory keeps track of sharers, one for each block of memory
- Stanford Dash; NUMA nodes of the Cray XE-6, SGI UV, Altix, Origin 2000
Some terminology

• Every block of memory has an associated **home**: the specific processor that physically holds the associated portion of the global address space.

• Every block also has an **owner**: the processor whose memory contains the actual value of the data.

• Initially home = owner, but this can change …

• … if a processor other than the home processor writes a block.
Inside a directory

- Each processor has a 1-bit “sharer” entry in the directory
- There is also a dirty bit and a PID identifying the owner in the case of a dirt block
Operation of a directory

- P0 loads A
- Set directory entry for A (on P1) to indicate that P0 is a sharer
Operation of a directory

- P2, P3 load A (not shown)
- Set directory entry for A (on P1) to indicate that P0 is a sharer
Acquiring ownership of a block

- P0 writes A
- P0 becomes the owner of A
Acquiring ownership of a block

- P0 becomes the owner of A
- P1’s directory entry for A is set to *Dirty*
- Outstanding sharers are invalidated
- Access to line is blocked until all invalidations are acknowledged
Change of ownership

P0 stores into A (home & owner)
P1 stores into A (becomes owner)
P2 loads A
Forwarding

P0 stores into A (home & owner)
P1 stores into A (becomes owner)
P2 loads A

home (P0) forwards request to owner (P1)

Store A, #y

A ← dirty

Store A, #x
(home & owner)

Load A

Directory

Scott B. Baden /CSE 260/ Winter 2014
Performance issues

• False sharing
• Locality, locality, locality
 ◆ Page placement
 ◆ Page migration
 ◆ Copying v. redistribution
 ◆ Layout
Today’s lecture

- Sparse matrices
- NUMA
- **Example NUMA Systems**
 - Cray XE-6
 - SGI
- Performance programming
Cray XE6 node

- 24 cores sharing 32GB main memory
- Packaged as 2 AMD Opteron 6172 processors “Magny-Cours”
- Each processor is a directly connected Multi-Chip Module: two hex-core dies living on the same socket
- Each die has 6MB of shared L3, 512KB L2/core, 64K L1/core
 - 1MB of L3 is used for cache coherence traffic
 - Direct access to 8GB main memory via 2 memory channels
 - 4 Hyper Transport (HT) links for communicating with other dies
- Asymmetric connections between dies and processors

www.nersc.gov/users/computational-systems/hopper/configuration/compute-nodes/
XE-6 Processor memory interconnect (node)

- Asymmetric connections between dies and processors
 - Direct access to 8GB main memory via 2 memory channels
 - 4 Hyper Transport (HT) links for communicating with other dies

socket 0

socket 1

die1 (6-11)
die0 (0-5)
die2 (12-17)
die3 (18-23)

Gemini Nic

16 bit HT link
8 bit HT link

http://www.ector.ac.uk/cse/documentation/Phase2b/#arch
XE-6 Processor memory interconnect (node)

http://www.ector.ac.uk/cse/documentation/Phase2b/#arch
Today’s lecture

• Sparse Matrices
• Example NUMA Systems
 ◆ Cray XE-6
 ◆ SGI Origin 2000
• Performance programming
Origin 2000 Interconnect

32 processor system

64 processor system
Locality
Poor Locality
Today’s lecture

• Sparse matrices
• NUMA
• Example NUMA Systems
 ❖ Cray XE-6
 ❖ SGI

• Performance programming
Quick primer on paging

- We group the physical and virtual address spaces into units called **pages**
- Pages are backed up on disk
- Virtual to physical mapping done by the Translation Lookaside Buffer (TLB), backs up page tables set up by the OS
- When we allocate a block of memory, we don’t need to allocate physical storage to pages; we do it on demand
Remote access latency

• When we allocate a block of memory, which processor(s) is (are) the owner(s)?
• We can control memory locality with the same kind of data layouts that we use with message passing
• Page allocation policies
 ◆ First touch
 ◆ Round robin
• Page placement and Page migration
• Copying v. redistribution
• Layout
Example

• Consider the following loop

```plaintext
for r = 0 to nReps-1
  for i = 0 to n-1
    a[i] = b[i] + q*c[i]
```
Page Migration

\[a[i] = b[i] + q \times c[i] \]

- Parallel initialization
- Serial initialization

Parallel Initialization, First touch
(No migration)
Migration eventually reaches the optimal time

- Round robin initial, w/ migration
- Parallel initialization
 - Serial initialization
- Parallel initialization, first touch, migration
- Parallel initialization, first touch (optimal)

One node initial placement, w/ migration
Cumulative effect of Page Migration

![Graph showing cumulative effect of page migration with various strategies: migration from one node, fixed round robin, migration from round robin, migration from optimal placement, and fixed optimal placement.](image_url)
Bisection Bandwidth and Latency

\[a(i) = b(i) + q \cdot c(i) \]
Parallelization via the compiler

integer n, lda, ldr, lds, i, j, k
real*8 a(lda,n), r(ldr,n), s(lds,n)
!
$OMP PARALLEL DO private(j,k,i), shared(n,a,r,s),

schedule(static)

do j = 1, n
do k = 1, n
do i = 1, n

 a(i,j) = a(i,j) + r(i,k)*s(k,j)

enddo

enddo

enddo
AMD Phenom’s memory hierarchy

Dedicated L1
- Locality keeps most critical data in the L1 cache
- Lowest latency
- 2 loads per cycle

Dedicated L2
- Sized to accommodate the majority of working sets today
- Dedicated to eliminate conflicts common in shared caches

Shared L3 – NEW
- Victim-cache architecture maximizes efficiency of cache hierarchy
- Fills from L3 leave likely shared lines in the L3
- Sharing-aware replacement policy

6MB L3 on cseclass 01 and 02

NUMA awareness

- When we allocate memory, a NUMA processor uses the *first-touch policy*, unless told otherwise.
- Be sure to use `parallel for` when initializing data:
  ```java
  x = new double[n], y, z = new double[n];
  #pragma omp parallel for
  for (i=0; i<n; i++) {x[i]=0; y[i] = ...; z[i] = ...}
  #pragma omp parallel for
  for (i=0; i<n; i++) {x[i] = y[i] + z[i]; }
  ```