CSE 260
Lecture 16

Sorting
Gaussian Elimination
Announcements

• Project Progress report, Today, up to 5% extra credit

• No Office Hours Today, make an appointment for Friday
Today’s lecture

• Sorting (application of collectives)
• Matrix Factorization (Linear algebra, block cyclic decomposition)
Parallel Sorting

• Sorting is fundamental algorithm in data processing
 - Given an unordered set of keys $x_0, x_1, \ldots, x_{N-1}$
 - Return the keys in sorted order
• The keys may be character strings, floating point numbers, integers, or any object for which the relations $>$, $<$, and $==$ hold
• In practice, we sort on external media,
 See: sortbenchmark.org
 - **TritonSort (UCSD):** 0.725×10^{12} bytes/minute
Rank sorting

• Compute the rank of each input value
• Move each value in sorted position according to its rank
• On an ideal parallel computer, the \texttt{forall} loops parallelize perfectly

\begin{verbatim}
forall i=0:n-1, j=0:n-1
 if (x[i] > x[j]) then rank[i] += 1 end if
forall i=0:n-1
 y[rank[i]] = x[i]
\end{verbatim}
In search of a fast and practical sort

• Rank sorting is impractical on real hardware
• Let’s borrow the concept: compute the processor owner for each key
• Communicate data in sorted order in one step
• But how do we know which processor is the owner?
• Depends on the distribution of keys
Bucket sort

- Divide key space into equal subranges and associate a bucket with each subrange
- Unsorted input data distributed evenly over processors
- Each processor maintains \(p \) local buckets
 - Assigns each key to a local bucket: \[\left\lfloor \frac{p \times \text{key}}{(K_{\text{max}}-1)} \right\rfloor \]
 - Routes the buckets to the correct owner (each local bucket has \(\sim \frac{n}{p^2} \) elements)
 - Sorts all incoming data into a single bucket

\[\begin{array}{cccccc}
29 & 25 & 3 & 49 & 9 & 37 & 21 & 43 \\
3 & 9 & 29 & 25 & 37 & 49 & 43 \\
0-9 & 10-19 & 20-29 & 30-39 & 40-49 \\
\end{array}\]

\[\begin{array}{cccccc}
0-9 & 10-19 & 20-29 & 30-39 & 40-49 \\
3 & 9 & 21 & 25 & 29 & 37 & 43 & 49 \\
\end{array}\]

Wikipedia
“Vector” All to All routes the data

- Processors maintain send and receive counts
- `MPI_Alltoallv`
  ```c
  void *sendbuf, int sendcounts[], int sDispl [],
  MPI_Datatype sendtype,
  void* recvbuf, int recvcounts[], int rDispl[],
  MPI_Datatype recvtype, MPI_Comm comm )
  ```
Alltoally example
Alltoally example

(proc 0 (sends))

(proc 1 (receives))

(proc 2)

Lori Pollock
Running time

- Assume that the keys are distributed uniformly over 0 to K_{max} - 1
- Local bucket assignment: $O(n/p)$
- Route each local bucket to the correct owner
 All to all: $O(n)$
- Local sorting: $O(n/p)$
 - Radix sort
Scaling study

- IBM SP3 system: 16-way servers w/ Power 3 CPUs
- Weak scaling: 1M points per processor

Local sort: quicksort
\[O(n/p \log(n/p)) \]

All-to-allv
\[O(n) \]
Worst case behavior

- What is the worst case?
- Mapping of keys to processors based on knowledge of K_{max}
- If keys are in range $[0, Q-1]$ …
 … processor k has keys in the range $[k*Q/P : (k+1)*Q/P]$
- For $Q=2^{30}$, $P=64$, each processor gets $2^{24} = 16$ M elements
- What if keys $\in [0, 2^{24} - 1] \subset [0, 2^{30} - 1]$?
- But if they keys are distributed non-uniformly, we need more information to ensure that the keys (and communication) are balanced over the processors
- Sample sort is an algorithm that collects such information and improves worst case behavior
Improving on bucket sort

- *Sample sort* remedies the problem

 [link](http://www.umiacs.umd.edu/research/EXPAR/papers/spaa96.html)
The idea behind sample sort

• Use a heuristic to estimate the distribution of the global key range over the p processors processor so that…
• …each processor gets about the same number of keys
• Sample the keys to determine a set of $p-1$ splitters that partition the key space into p disjoint intervals [sample size parameter: s]
• Each interval is assigned a unique processor mapped to a bucket
• Once each processor knows the splitters, it can distribute its keys to the others accordingly
• Processors sort incoming keys
Alltoally used in sample sort

Initial element distribution

Local sort & sample selection

Sample combining

Global splitter selection

Final element assignment

Splitter selection: regular sampling

- After sorting local keys, each processor chooses p evenly spaced samples
- Each processor “deals” its sorted data into one of p bins
 - The k^{th} item is placed into position $[k/p]$ of bin $k \mod p$
 - When done, each sends bin j to processor j
- This is like a transpose with block sizes $= n/p^2$
- Each processor receives p sorted subsequences
- Processor $p-1$ determines the splitters
 - It samples each sorted subsequence, taking every $(kn/(p^2s))^{th}$ element ($1 \leq k \leq s-1$), where $p \leq s \leq n/p^2$
 - Merges the sampled sequences, and collects $p-1$ regularly spaced splitters
 - Broadcasts the splitters to all processors
- Processors route (exchange) sorted subsequences according to the splitters (transpose)
- The data are unshuffled
Performance

- Assuming $n \geq p^3$ and $p \leq s \leq n/p^2$
- Running time is $\approx O((n/p) \lg n)$
- With high probability …
 no processor holds more than $(n/p + n/s - p)$ elements
- Duplicates d do not impact performance unless $d = O(n/p)$
- Tradeoff: increasing s …
 - Spreads the final distribution more evenly over the processors
 - Increases the cost of determining the splitters
- For some inputs, communication patterns can be highly irregular with some pairs of processors communicating more heavily than others
- This imbalance degrades communication performance
The collective calls

• Processes transmit varying amounts of information to the other processes
• This is an MPI_Alltoallv
 (SKeys, send_counts, send_displace, MPI_INT, RKeys, recv_counts, recv_displace, MPI_INT, MPI_COMM_WORLD)
• Prior to making this call, all processes must cooperate to determine how much information they will exchange
 ✷ The send list describes the number of keys to send to each process k, and the offset in the local array
 ✷ The receive list describes the number of incoming keys for each process k and the offset into the local array
Determining the send and receive lists

- After sorting, each process scans its local keys from left to right, marking where the splitters divide the keys, in terms of **send counts**
- Perform an all to all to transpose these send counts into receive counts

  ```c
  MPI_Alltoall(send_counts, 1, MPI_INT, recv_counts, 1, MPI_INT, MPI_COMM_WORLD)
  ```
- A simple loop determines the displacements

  ```c
  for (p=1; p < nodes; p++){
    s_displ[p] = s_displ[p-1] + send_counts[p-1];
    r_displ[p] = r_displ[p-1] + rend_counts[p-1];
  }
  ```
Today’s lecture

• Sorting (application of collectives)

• Matrix Factorization (Linear algebra, block cyclic decomposition)
Linear systems of equations

- A common task in scientific computation is to solve a system of linear equations
- Often result from discretizing a differential equation
- Example: linear system of 2 equations in 2 unknowns

\[(1) \quad 2x + 3y = 8 \]
\[(2) \quad 3x + 2y = 7 \]

- Rewriting equation (1)
 \[x = \frac{(8-3y)}{2} \]
- Substituting \(x \) into the LHS of equation (2)
 \[3\left(\frac{8-3y}{2}\right) + 2y = \frac{(24-9y)}{2} + 2y \]
 \[\Rightarrow (24-9y) + 4y = 14 \Rightarrow 10 = 5y \Rightarrow y = 2 \]
- Back substituting the value of \(y \) into equation (1)
 \[x = 1 \]
Matrix vector equations

• Our linear system of 2 equations in 2 unknowns ...
 \[2x_1 + 3x_2 = 8 \]
 \[3x_1 + 2x_2 = 7 \]

• may be conveniently expressed in matrix notation: \(Ax = b \)

\[
A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, b = \begin{pmatrix} 8 \\ 7 \end{pmatrix}
\]

• When we solved for \(x_1 = (8-3x_2)/2 \) and substituted the value of \(x_1 \) into the 2\(^{nd} \) equation, we reduced the matrix to an equivalent form

\[
A = \begin{pmatrix} 2 & 3 \\ 0 & -2.5 \end{pmatrix}, b = \begin{pmatrix} 8 \\ -5 \end{pmatrix}
\]

• We multiplied row 1 of \(A \) by 3/2 and subtracting the scaled version from row 2 of \(A \) and \(b \)

• We call this a \textit{rank-1 update}
Rank 1 updates

- Multiplying row 1 by 3/2: $[3 \ 9/2]$
- Subtracting from row 2:
- Similarly for b

$$A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$$

$$A' = \begin{pmatrix} 2 & 3 \\ 0 & -2.5 \end{pmatrix}$$
Gaussian Elimination

• The process of eliminating the non-zero values under the main diagonal is called *Gaussian Elimination*, named after the mathematician *Johann Carl Friedrich Gauss* (1777-1855)

• Input: an $n \times n$ matrix corresponding to a linear system of n equations in n unknowns (must have non-trivial sol’n)

• Output: an $n \times n$ matrix with zeroes under the main diagonal: an *upper triangular matrix* U
Solving the system of linear equations

• Step 1: obtain the upper triangular matrix U …
• Step 2: solve the corresponding upper triangular system \(Ux = c \) by *back substitution*
What are we computing?

• GE computes the \textit{LU factorization} $A = L \ U$, where L is a \textit{lower triangular matrix}.

• Plugging LU into the original equation $A \ x = b$

 $A \ x = (LU) \ x = L \ (U \ x) = Ly = b$ where $y = U \ x$
Cost

• To solve $Ax = b$
 - Factorize $A = LU$ using GE \((2/3 \, n^3 \text{ flops})\)
 - Solve $Ly = b$ for y using substitution \((n^2 \text{ flops})\)
 - Solve $Ux = y$ for x using back substitution \((n^2 \text{ flops})\)

• We don’t compute U explicitly unless we are solving for multiple right hand sides b

• Focus on factorization, which is much more expensive
A 3×3 example

- Consider the following system of equations

\[
\begin{align*}
 x_0 + x_1 + x_2 &= 3 \\
 4x_0 + 3x_1 + 4x_2 &= 8 \\
 9x_0 + 3x_1 + 4x_2 &= 7
\end{align*}
\]

- We usually write the system as an \textit{augmented matrix}

\[
\begin{bmatrix}
 1 & 1 & 1 & | & 3 \\
 4 & 3 & 4 & | & 8 \\
 9 & 3 & 4 & | & 7
\end{bmatrix}
\]
3 × 3 example

- Multiply row 0 by 4, and subtract from row 1

\[
\begin{bmatrix}
1 & 1 & 1 & 3 \\
4 & 3 & 4 & 8 \\
9 & 3 & 4 & 7 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
4 & 3 & 4 & 8 \\
\end{bmatrix} - 4 \times \begin{bmatrix}
1 & 1 & 1 & 3 \\
\end{bmatrix} = \begin{bmatrix}
0 & -1 & 0 & -4 \\
\end{bmatrix}
\]
3×3 example

- Multiply row 0 by 9, and subtract from row 2

$$\begin{bmatrix}
1 & 1 & 1 & 3 \\
0 & -1 & 0 & -4 \\
9 & 3 & 4 & 7
\end{bmatrix}$$

$$\begin{bmatrix}
9 & 3 & 4 & 7 \\
0 & 1 & 1 & 3
\end{bmatrix} - 9 \begin{bmatrix}
1 & 1 & 1 & 3 \\
0 & -1 & 0 & -4 \\
0 & -6 & -5 & -20
\end{bmatrix} = \begin{bmatrix}
0 & -6 & -5 & -20
\end{bmatrix}$$
3 × 3 example

- Eliminate second column
- Multiply row 1 by 6, and add to row 2

\[
\begin{bmatrix}
1 & 1 & 1 & 3 \\
0 & -1 & 0 & -4 \\
0 & -6 & -5 & -20
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & -6 & -5 & -20
\end{bmatrix}
+ -6\times
\begin{bmatrix}
0 & -1 & 0 & -4
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & -5 & 4
\end{bmatrix}
\]
Gaussian Elimination (GE)

- Add multiples of each row to later rows to make A upper triangular

 ... for each column k
 ... zero it out below the diagonal by adding multiples of row k to later rows
 for k = 0 to n-1
 ... for each row i below row k
 for i = k+1 to n-1
 ... add a multiple of row k to row l
 for j = k+1 to n-1
Eliminating the entries below the diagonal

- For each column $k : 0$ to $n-1$
 - … subtract multiples of row k: $A[k,k+1:n]$
 - … from rows $i = k+1$ to n
 - Multipliers $m_{ik} = A[i,k] / A[k,k]$
 - … cancel the elements below the diagonal: $A[k+1:n-1,k]$
 - Update only to the right of & below $A[k,k]$

for $i = k+1$ to $n-1$

$A[i,k+1:n] = m_{ik} \times A[k, k+1:n]$
Roundoff issues

- The rank-1 update step uses division ...

 \[A[i, k+1:n] \leftarrow (A[i,k]/A[k,k]) \times A[k,k+1:n] \]

- We need to be able to handle vanishing denominators or ones that are very small

- Gaussian elimination will fail with this matrix

 \[
 \begin{bmatrix}
 0 & 1 \\
 1 & 0
 \end{bmatrix}
 \]

- But we can avoid the problem if we swap rows

 \[
 \begin{bmatrix}
 1 & 0 \\
 0 & 1
 \end{bmatrix}
 \]
Pivoting to avoid stability problems

- We call this process of swapping rows *partial pivoting*
- Assume we carry 3 decimal digits of precision
- Consider the following A matrix and RHS b

\[
A = \begin{bmatrix} 10^{-4} & 1 \\ 1 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
\]

- The correct solution is

\[
x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]
Roundoff Error

• Eliminate zero in row 2 by subtracting $10^4 \times$ row 0

$$L | b = \begin{bmatrix}
10^{-4} & 1 & 1 \\
0 & 1 - 10^4 & 2 - 10^4
\end{bmatrix}$$

• But $1 - 10^4$ rounds to -10^4

$$L | b = \begin{bmatrix}
10^{-4} & 1 & 1 \\
0 & -10^4 & -10^4
\end{bmatrix}$$

• Back substituting to solve for x_2 and then x_1

$$-10^4 x_2 = -10^4 \Rightarrow x_2 = 1$$

• Substituting the value of x_2 into the first equation

$$10^{-4} x_1 + 1 \times x_2 = 1 \Rightarrow 10^{-4} x_1 = 0 \Rightarrow x_1 = 0$$

• But the correct solution is $x_1 = x_2 = 1$
Partial Pivoting

- Rule: pick the largest value in the column
- This is called partial pivoting, because only rows are swapped
- It can be shown that when with partial pivoting, we compute $PA = LU$, where P is a permutation matrix expressing the rows swaps
- We can also swap columns: full pivoting $PAQ = LU$
- But full pivoting is more expensive to implement
Parallelization

- We’ll use 1D vertical strip partitioning
- Each process owns N/p columns
- Consider the case where p=N=6
- The ■ represents outstanding work in succeeding k iterations

0
...
0
...
After i=1

0
0
...
0
0
0
0
0
0
After i=2

0
0
0
0
0
0
0
0
0
After i=3

0
...
0
...
0
0
0
0
0
After i=n-1
Parallelism and data dependencies

• Analyze the code to determine communication requirements
• Assume blocked decomposition on the 2nd axis
• Each process in charge of eliminating N/P columns
• Parallelism occurs in \textit{array statements}
• One process chooses pivot row, computes multipliers

\begin{verbatim}
for k = 0 to n-1 // For each column k

 for i = k+1 to n-1 // for each row i > k
 A[i,k+1:n-1] -= m[i] * A[k,k+1:n-1] // Scale row k by m_{ik}
 // & subtract from row i

end for
end for
\end{verbatim}
Determining communication requirements

- At each step k of the elimination, processor $k \div p$ is in charge: it computes the multipliers.
- No communication is needed: all the required data are *owned* by processor $k \div p$.

\[
\text{for } k = 0 \text{ to } n-1 \\
m[k+1:n-1] = A[k+1:n-1,k] / A[k,k] \\
\text{for } i = k+1 \text{ to } n-1 \\
\text{end for}
\]

\[
\text{end for}
\]
Commination in trailing matrix update

- Elements in $A[k, k+1: n]$ (row k) have different owners
- Process $k \div P$ broadcasts multipliers enabling all to carry out the multiplication $m[j] \times A[k, :]$.

For $k = 0$ to $n-1$

\[m[k+1:n-1] = \frac{A[k+1:n-1,k]}{A[k,k]} \]

// Scale row k by m_{ik} and subtract from row l

For $j = k+1$ to $n-1$ // for each row $i > k$

\[A[j,k+1:n-1] - = m[j] \times A[k,k+1:n-1] \]

end for

end for
Performance

• Finding the pivot row is a serial bottleneck
 - Only one process owns the intersecting column

• Another bottleneck is load imbalance
 - When eliminating a column, processors to the left are idle
 - Each processor is active for only part of the computation
Cyclic decomposition improves load balance

• A cyclic decomposition evens out the workload
• A blocked cyclic decomposition improves locality and reduces communication overhead
Data Partitioning

- 2D block cyclic decompositions scale better than 1D
- More complicated since additional communication steps are required
- Improved locality as the block size increases
- The algorithm is blocked as with matrix multiply
- ScaLAPACK is a well known library that performs GE and many other useful operations involving matrices
- See http://www.netlib.org/scalapack
Blocked algorithm

- Our algorithm makes BLAS1 updates, rows & columns only
- Performance is poor: like the ijk matrix multiply algorithm
- We can block GE, too, using BLAS level 3, though more complicated than MMPY because of dependencies
- We use “delayed updates” on trailing submatrix
- We update the trailing matrix with the effect of multiple updates in the original algorithm
Blocked algorithm

for \(ib = 1\) to \(n-1\) step \(b\)
\(\text{... Process matrix } b \text{ columns at a time}\)
end = \(ib + b-1\)
\(\text{... end of block of } b \text{ columns}\)

apply BLAS2 version of GEPP to
\(A(ib:n \text{, } ib:end) = P' \cdot L' \cdot U'\)
\(\text{... } LL \text{ = lower triangular part of } A(ib:end \text{, } ib:end) + I\)
\(A(ib:end \text{, } end+1:n) = LL^{-1} \cdot A(ib:end \text{, } end+1:n)\)
\(\text{... update next } b \text{ rows of } U\)
\(A(end+1:n \text{, } end+1:n) = A(end+1:n \text{, } end+1:n) - A(end+1:n \text{, } ib:end) \cdot A(ib:end \text{, } end+1:n)\)
\(\text{... apply delayed updates with single matrix-multiply}\)
\(\text{... with inner dimension } b\)
Row and Column Block Cyclic Layout

- Processors and matrix blocks are distributed in a 2d array
 - $\text{prow} \times \text{pcol}$ array of processors
 - $\text{brow} \times \text{bcol}$ matrix blocks
 - Adjust block size to ensure that b columns of A fit in cache
- pcol-way parallelism in a column
- Calls to BLAS2 and BLAS3 on matrices of size $\text{brow} \times \text{bcol}$
- Reduces serial bottleneck
- $\text{prow} \neq \text{pcol}$ and $\text{brow} \neq \text{bcol}$ possible, possibly desirable
Distributed GE with a 2D Block Cyclic Layout

Choose pivot, compute multipliers, make swap decision

Broadcast swap decision and multipliers so each block column can participate

Carry out the elimination

Follows Demmel’s discussion
Distributed Gaussian Elimination with a 2D Block Cyclic Layout

for \(ib = 1 \) to \(n-1 \) step \(b \)

\[
end = \min(ib+b-1, n)
\]

for \(i = ib \) to \(end \)

(1) find pivot row \(k \), column broadcast

(2) swap rows \(k \) and \(i \) in block column, broadcast row \(k \)

(3) \(A(i+1: n , i) = A(i+1: n , i) / A(i , i) \)

(4) \(A(i+1: n , i+1: end) = A(i+1: n , i) * A(i , i+1: end) \)

end for

(5) broadcast all swap information right and left

(6) apply all rows swaps to other columns

Scott B. Baden /CSE 260/ Winter 2014
Matrix multiply of green = green - blue * pink

(7) Broadcast LL right

(8) \(A(\text{ib:end}, \text{end+1:n}) = \text{LL} \setminus A(\text{ib:end}, \text{end+1:n})\)

(9) Broadcast \(A(\text{ib:end}, \text{end+1:n})\) down

(10) Broadcast \(A(\text{end+1:n}, \text{ib:end})\) right

(11) Eliminate \(A(\text{end+1:n}, \text{end+1:n})\)