CSE 160
Lecture 13

Non-blocking Communication
Under the hood of MPI
Performance
Stencil Methods in MPI
Announcements
Today’s lecture

• Asynchronous non-blocking, point to point communication
• Under the hood of MPI
• Debugging
• Communication Performance
• Stencil methods in MPI
Recapping Send andRecv

- Primitives that implement Point to Point communication
- When \textbf{Send()} returns, the message is “in transit”
 - A return doesn’t tell us if the message has been received
 - The data is somewhere in the system
 - Safe to overwrite the buffer
- \textbf{Receive()} blocks until the message has been received
 - Safe to use the data in the buffer

\[
\begin{align*}
\text{Send}(y,1) & \quad \text{Recv}(x)
\end{align*}
\]
Asynchronous, non-blocking communication

• With Send or Receive, a return indicates the buffer may be reused, or that the data is ready
• There is also an *non-blocking asynchronous* form, that does not wait for completion: “Immediate return”
 ✦ Required to express certain algorithms
 ✦ Optimize performance: message flow problems
• *Split-phased*
 ✦ Phase 1: initiate communication with the immediate ‘I’ variant of the point-to-point call \texttt{IRcv()}, \texttt{ISend()}
 ✦ Phase 2: synchronize \texttt{Wait()}
 ✦ Perform unrelated computations between the two phases
Immediate mode send and receive

- Must synchronize with a \texttt{Wait()} before reusing buffer (\texttt{Send}) or consuming data (\texttt{Receive})
- A \texttt{request} argument enables us to refer to a message we are waiting on

\begin{verbatim}
MPI_Request request;
MPI_Irecv(buf, count, type, src, tag, comm, &request)
MPI_Wait(&request, &status)
\end{verbatim}

- \texttt{Irecv + Wait = Recv}
 - \texttt{MPI_Recv}(buf, count, type, src, tag, comm, &status)
- \texttt{Immediate Send}
 - \texttt{MPI_Isend}(buf, count, type, dest, tag, comm, &request)
Restrictions on non-blocking communication

• The message buffer may not be accessed between an IRecv() (or ISend()) & its accompanying Wait()

ISend(data,destination)
Wait() on ISend()

Use the data

• Each pending IRecv() must have a distinct buffer
Overlap

<table>
<thead>
<tr>
<th>Overlap</th>
<th>No Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRecv(x, req)</td>
<td>IRecv(x)</td>
</tr>
<tr>
<td>Send(…)</td>
<td>Send(…)</td>
</tr>
<tr>
<td>Compute(y)</td>
<td>Wait(x)</td>
</tr>
<tr>
<td>Wait(req)</td>
<td>Compute(x)</td>
</tr>
<tr>
<td>Compute(x)</td>
<td>Compute(y)</td>
</tr>
</tbody>
</table>

A message buffer may not be accessed between an IRecv() (or ISend()) and its accompanying wait()
Message completion

• A `Send()` *may or may not* complete…
• … before a `Recv()` has been posted
• “May or may not” depends on the implementation
• Some programs may deadlock on certain message passing implementations

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Send (x,1)</code></td>
<td><code>Send(y,0)</code></td>
</tr>
<tr>
<td><code>Recv (y,1)</code></td>
<td><code>Recv(x,0)</code></td>
</tr>
</tbody>
</table>

This program may deadlock

This program is “safe”
MPI has pre-allocated storage for the incoming message so there's no possibility of running out of storage

<table>
<thead>
<tr>
<th>Process 0</th>
<th>Process 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Send (x,1)</code></td>
<td><code>Recv(x,0)</code></td>
</tr>
<tr>
<td><code>Recv (y,1)</code></td>
<td><code>Send(y,0)</code></td>
</tr>
</tbody>
</table>
Today’s lecture

• Asynchronous non-blocking, point to point communication
• Under the hood of MPI
• Debugging
• Communication Performance
• Stencil methods in MPI
Buffering

• Where does the message go when you send it?
• If there’s not a pending receive for an incoming message, it’s placed in an anonymous system buffer
• When the receive gets posted, the message is moved into the user specified buffer
• Double copying reduces communication performance
• Non-blocking communication can help avoid it
Rendezvous

• When a long message is to be sent, can MPI just send the message?
• For “short” message, it can. This is *eager mode*
• *Eager limit*: longest message that can be sent in eager mode
• See M. Banikazemi et al., IEEE TPDS, 2001, “MPI-LAPI: An Efficient Implementation of MPI for IBM RS/6000 SP Systems”
• For long messages, MPI first sends a scout to get permission to send the message
• This is called *rendezvous mode*
Correctness and fairness

① Iteration 1: 1 → 2 & 0
 0 → 1 (0 → 2)
 2 → 0 & 1

② 1 begins iteration 2: 1 → 2

③ 0 → 2 (but for iteration 1)

④ Problem: irecv in P2 receiving data from P1 in iteration 2 while it expects data from P0 in iteration 1

For i = 1 to n
MPI_Request req1, req2;
MPI_Status status;
MPI_Irecv(buff, len, CHAR, ANY_NODE, TYPE, WORLD,&req1);
MPI_Irecv(buff2,len, CHAR, ANY_NODE, TYPE, WORLD,&req2);
MPI_Send(buff, len, CHAR, nextnode, TYPE, WORLD);
MPI_Send(buff, len, CHAR, prevnode, TYPE, WORLD);
MPI_Wait(&req1, &status);
MPI_Wait(&req2, &status);
End for
Today’s lecture

• Asynchronous non-blocking, point to point communication
• Under the hood of MPI
• Debugging
• Communication Performance
• Stencil methods in MPI
Debugging tips

- Bugs?! Not in my code!

- The seg fault went away when I added a print statement

- Garbled output

- 2D partitioning is much more involved than 1D

- MPI is a library, not a language

- Gdb not as useful when you have many processes
Parallel print function

• Problem: how to sort out all the output on the screen
• Many messages say the same thing

 Process 0 is alive!
 Process 1 is alive!
 ...
 Process 15 is alive!

• Compare with

 Processes[0–15] are alive!

• Parallel print facility

 http://www.llnl.gov/CASC/ppf
Summary of capabilities

- Compact format list sets of nodes with common output

 \[
 \text{PPF}_\text{Print}(\text{MPI_COMM_WORLD}, \text{"Hello world"});
 \]

 \(0–3: \text{Hello world}\)

- \%N specifier generates process ID information

 \[
 \text{PPF}_\text{Print}(\text{MPI_COMM_WORLD}, \text{"Message from \%N\n"});
 \]

 \(\text{Message from } 0–3\)

- Lists of nodes

 \[
 \text{PPF}_\text{Print}(\text{MPI_COMM_WORLD},
 \text{(myrank \% 2)
 \text{? "[\%N] Hello from the odd numbered nodes!\n"}
 \text{: "[\%N] Hello from the even numbered nodes!\n")}
 \]

 \([0,2] \text{ Hello from the even numbered nodes!}
 \[1,3] \text{ Hello from the odd numbered nodes!}\)
Practical matters

• Installed in $(PUB)/lib/PPF
• Specify ppf=1 and mpi=1 on the “make” line or in the Makefile
 ◆ Defined in arch.gnu-4.7_c++11.generic
 ◆ Each module that uses the facility must

 #include “ptools_ppf.h”

• Look in $(PUB)/Examples/MPI/PPF for example programs ppfexample_cpp.C and test_print.c

• Uses MPI_Gather()
Today’s lecture

• Asynchronous non-blocking, point to point communication
• Under the hood of MPI
• Debugging
• Communication Performance
• Stencil methods in MPI
Where does the time go?

• Communication performance can be a major factor in determining application performance

• Under ideal conditions…
 - There is a pending receive waiting for an incoming message, which is transmitted directly to and from the user’s message buffer
 - There is no other communication traffic

• Assume a contiguous message

• LogP model (Culler et al, 1993)
Communication performance

• The so-called $\alpha \beta$ model is often good enough

• Message passing time $= \alpha + \beta^{-1}\infty n$

 $\alpha = \text{message startup time}$

 $\beta\infty = \text{peak bandwidth (bytes per second)}$

 $n = \text{message length}$

• “Short” messages: startup term dominates

 $\alpha >> \beta^{-1}\infty n$

• “Long” messages: bandwidth term dominates

 $\beta^{-1}\infty n >> \alpha$
Typical bandwidth curve (SDSC Triton)

\[B_\infty = 1.2 \text{ GB/sec} \]
\[@N = 8\text{MB} \]

\[\alpha = 3.2 \mu\text{sec} \]

Long Messages: \[\beta^{-1}\infty n >> \alpha \]

Scott B. Baden /CSE 260/ Winter 2014
Half power point

• \(T(n) = \) time to send a message of length \(n \)
• Let \(\beta(n) = \) the effective bandwidth \(\beta^{-1}(n) = \frac{n}{T(n)} \)
• We define the half power point \(n_{1/2} \) as the message size need to achieve \(\frac{1}{2} \beta_{\infty} \)
 \[\frac{1}{2} \beta^{-1}_\infty = n_{1/2} / T(n_{1/2}) \Rightarrow \beta^{-1}(n_{1/2}) = \frac{1}{2} \beta^{-1}_\infty \]
• In theory, this occurs when \(\alpha = \beta^{-1}_\infty n_{1/2} \)
 \[\Rightarrow n_{1/2} = \alpha \beta_{\infty} \]
• Generally not a good predictor of \(n_{1/2} \)
• For SDSC’s Triton Cluster
 - \(\alpha \approx 3.2 \mu s, \beta_{\infty} \approx 1.2 \) Gbytes/sec \(\Rightarrow n_{1/2} \approx 3.6\)KB
 - The actual value of \(n_{1/2} \approx 20\)KB
Short and intermediate message lengths

Triton

Length (bytes)

usec

Triton

gigabytes/sec

Length (bytes)
Today’s lecture

• Asynchronous non-blocking, point to point communication
• Under the hood of MPI
• Debugging
• Communication Performance
• Stencil methods in MPI
Stencil methods under message passing

- Recall the image smoother

```plaintext
for iter = 1 : nSmooth
    for (i,j) in 0:N-1 x 0:N-1
        Img^new[i,j] = (Img[i-1,j]+Img[i+1,j]+Img[i,j-1]+Img[i,j+1])/4
    end
    Img = Img^new
end
```

```
Original
100 iter
1000 iter
```

Scott B. Baden /CSE 260/ Winter 2014
Data partitioning

- Partition computation and data, assigning each partition to a unique process: “Owner computes rule”
- The **processor geometry** defines the partitionings
- Dependences on values found on neighboring processes
- Communicate off-processor data
Ghost cells

- “Overlap” or “ghost” cells hold a copies off-process values
- Surround each local subproblem
- Non-contiguous data on some boundaries
Managing ghost cells

- Post \texttt{IReceive ()} for all neighbors
- \textbf{Send} data to neighbors
- \textbf{Wait} for completion
Performance is sensitive to processor geometry

- Aliev- Panfilov method running on triton.sdsc.edu (Nehalem Cluster)
- 256 cores, n=2047, t=10 (8932 iterations)

<table>
<thead>
<tr>
<th>Geometry</th>
<th>GFlops</th>
<th>Gflops w/o Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 x 8</td>
<td>573</td>
<td>660</td>
</tr>
<tr>
<td>8 x 32</td>
<td>572</td>
<td>662</td>
</tr>
<tr>
<td>16 x 16</td>
<td>554</td>
<td>665</td>
</tr>
<tr>
<td>2 x 128</td>
<td>508</td>
<td>658</td>
</tr>
<tr>
<td>4 x 64</td>
<td>503</td>
<td>668</td>
</tr>
<tr>
<td>128 x 2</td>
<td>448</td>
<td>658</td>
</tr>
<tr>
<td>256 x 1</td>
<td>401</td>
<td>638</td>
</tr>
</tbody>
</table>
Modeling the parallel running time

- The model has two parts
 - Local computation
 - Communication
- We may ignore the convergence test (check infrequently)
- Communication overheads are due to ghost cell updates
- 2 kinds of geometries: strips vs boxes
Model assumptions and definitions

• $T(1,(m,n)) =$ running time of the **best serial algorithm** on a problem of size $m \times n$

• $T(P,(m,n)) =$ running time on P processors

• $T_\gamma(P,(m,n)) =$ **grind time** on P processors
 - $T_\gamma(P,(m,n)) = T(P,(m,n))/(m \cdot n \cdot Niter)$
 - Ideally T_γ is independent of m, n, and P

• Processor geometry is $p \times q$
 - Strips or box –like partitions

• $T(P,(N,N)) = T(1,(m,n)) + T_{\text{comm}}, \ m = N/p, \ n = N/q$

• Following analysis applies to a Poisson Solver

\[u'[i,j] = (u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] - h^2*b[i-1,j-1])/4 \]
Communication costs for 1D geometries

- Assumptions
 - P divides N evenly
 - $N/P > 2$
 - 1 word = double precision floating point = 8 bytes

- For horizontal strips, data are contiguous

 \[T_{\text{comm}} = 2(\alpha + 8\beta N) \]
2D Processor geometry

• Assumptions
 - \(\sqrt{P} \) divides \(N \) evenly
 - \(N/\sqrt{P} > 2 \)
 - 1 word = double precision floating pt. = 8 bytes

• Ignore the cost of packing message buffers

• \(T_{\text{comm}} = 4(\alpha + 8\beta N/\sqrt{P}) \)
Summing up communication costs

• Substituting $T_\gamma \approx 16 \beta$
• 1-D decomposition

\[
(16N^2 \beta / P) + 2(\alpha + 8\beta N)
\]

• 2-D decomposition

\[
(16N^2 \beta / P) + 4(\alpha + 8\beta N / \sqrt{P})
\]
Comparative performance

- Strip decomposition will outperform box decomposition … resulting in lower communication times … when \(2(\alpha + 8\beta N) < 4(\alpha + 8\beta N/\sqrt{P}) \)

- Assuming \(P \geq 2 \): \(N < (\sqrt{P}/(\sqrt{P} - 2))(\alpha/(8\beta)) \)

- On Bang
 \(\alpha = 1.2 \, \text{us}, \beta = 1/(1.4 \, \text{GB/sec}) \)
 * \(N < 210(\sqrt{P}/(\sqrt{P} - 2)) \)
 * For \(P = 16 \), strips are preferable when \(N < 280 \)

- On SDSC’s IBM SP3 system “Blue Horizon”
 \(\alpha = 24 \, \text{us}, \beta = 1/(390 \, \text{MB/sec}) \)
 * \(N < 1170 \, (\sqrt{P}/(\sqrt{P} - 2)) \)
 * For \(P = 16 \), strips are preferable when \(N < 2340 \)
Parallel speedup and efficiency

• 1-D decomposition

\[S_P = \frac{T_1}{T_P} = \frac{16N^2\beta}{16N^2\beta/P + 2(\alpha+8\beta N)} \]
\[E_P = \frac{S_P}{P} = \frac{16N^2\beta}{16N^2\beta + 2P(\alpha+8\beta N)} \]
\[= \frac{1}{1 + (\alpha+8\beta N)P/(8N^2\beta)} \]

• 2-D decomposition

\[S_P = \frac{T_1}{T_P} = \frac{16N^2\beta}{16N^2\beta/P+4(\alpha+8\beta N/\sqrt{P})} \]
\[E_P = \frac{S_P}{P} = \frac{16N^2\beta}{(16N^2\beta)+4(\alpha P+8\beta N\sqrt{P})} \]
\[= \frac{1}{1 + (\alpha P+8\beta N\sqrt{P})/(4N^2\beta)} \]
Putting these formulas to work

- 1-D decomposition
- Plot E_P as a function of N, varying P as a parameter
 \[E_P = \frac{1}{1 + (\alpha + 8\beta N)P / (8N^2\beta)} \]
- Plot the fraction of time spent communicating
Parallel efficiency

Scott B. Baden /CSE 260/ Winter 2014
Communication fraction

N = 128

N = 1024
Surface to volume ratio affects performance

• The *surface to volume ratio* of a geometry is the maximum number of points on the surface (perimeter) over all partitions divided by the volume

• As we increase N while leaving P fixed, we decrease the surface to volume ratio, which gives us a measure of the relative cost of communication

• As volume increases, S/V drops
Surface to volume ratio

1 unit of work
4 units of communication

16 units of work
16 units of communication
The curse of dimensionality

• As we move to higher dimensional spaces, communication becomes relatively more costly
 ► In 2D: $4N / N^2 = 4/N$
 ► In 3D: $6N^2 / N^3 = 6/N$
• Large memory strides