Lecture 11

Floating Point Arithmetic

Particle Methods
Announcements

• A3 deadline delayed 24 hours (Thu)
Today’s lecture

• Floating Point
• Particle Methods
What is floating point?

• A representation
 - ±2.5732… × 10^{22}
 - NaN ∞
 - Single, double, extended precision

• A set of operations
 - + = * / √ rem
 - Comparison < ≤ = ≠ ≥>

• Conversions between different formats, binary to decimal

• Exception handling

• Language and library support

• IEEE Floating point standard P754
 - Universally accepted
 - W. Kahan received the Turing Award in 1989 for design of IEEE Floating Point Standard
 - Revision in 2008
IEEE Floating point standard P754

- Normalized representation $\pm 1.d\ldots d \times 2^{\text{exp}}$
 - Macheps = Machine epsilon = $\epsilon = 2^{-\#\text{significand bits}}$
 relative error in each operation
 - OV = overflow threshold = largest number
 - UN = underflow threshold = smallest number
- \pmZero: \pmsignificand and exponent = 0

<table>
<thead>
<tr>
<th>Format</th>
<th># bits</th>
<th>#significand bits</th>
<th>macheps</th>
<th>#exponent bits</th>
<th>exponent range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>32</td>
<td>$23 + 1$</td>
<td>$2^{-24} (~10^{-7})$</td>
<td>8</td>
<td>$2^{-126} - 2^{127} (~10^{+38})$</td>
</tr>
<tr>
<td>Double</td>
<td>64</td>
<td>$52 + 1$</td>
<td>$2^{-53} (~10^{-16})$</td>
<td>11</td>
<td>$2^{-1022} - 2^{1023} (~10^{+308})$</td>
</tr>
<tr>
<td>Double</td>
<td>≥ 80</td>
<td>≥ 64</td>
<td>$\leq 2^{-64} (~10^{-19})$</td>
<td>≥ 15</td>
<td>$2^{-16382} - 2^{16383} (~10^{+4932})$</td>
</tr>
</tbody>
</table>

Jim Demmel

Scott B. Baden /CSE 260/ Winter 2014
What happens in a floating point operation?

• Round to the nearest representable floating point number that corresponds to the exact value (correct rounding)
• When there are ties, round to the nearest value with the lowest order bit = 0 (rounding toward nearest even)
• Others are possible
• We don’t need the exact value to work this out!
• Applies to + = * / √ rem and to format conversion
• Error formula: \(\text{fl}(a \ op \ b) = (a \ op \ b)(1 + \delta) \) where
 • \(\delta \) one of + , - , * , /
 • \(| \delta | \leq \varepsilon = \text{machine epsilon} \)
 • assumes no overflow, underflow, or divide by zero
• Addition example
 • \(\text{fl}(\sum x_i) = \sum_{i=1:n} x_i(1+e_i) \)
 • \(|e_i| \sim< (n-1)\varepsilon \)
Addition example

\[\text{fl}(x_1+x_2+x_3+x_4) = \left\{\left[(x_1+x_2)(1+\delta_1) + x_3\right](1+\delta_2) + x_4\right\} (1+\delta_3)\]

\[= x_1(1+\delta_1)(1+\delta_2)(1+\delta_3) + x_2(1+\delta_1)(1+\delta_2)(1+\delta_3) + x_3(1+\delta_2)(1+\delta_3) + x_4(1+\delta_3)\]

\[\equiv x_1(1+e_1) + x_2(1+e_2) + x_3(1+e_3) + x_4(1+e_4)\]

where \(|e_i| \leq 3 \text{macheps}\)
Exceptions

• An exception occurs when the result of a floating point operation is not a real number, or too extreme to represent accurately? We get an exception:
 \[1/0, \sqrt{-1}, 1.0\times10^{-30} + 1.0\times10^{30} \]

• P754 standardizes how we handle exceptions
 - **Overflow**: exact result > \(OV \), too large to represent, returns \(\pm \infty \)
 - **Underflow**: exact result nonzero and < \(UN \), too small to represent
 - **Divide-by-zero**: nonzero/0, returns \(\pm \infty = \pm 0 \) (Signed zeroes)
 - **Invalid**: 0/0, \(\sqrt{-1} \), log(0), etc.
 - **Inexact**: there was a rounding error (common)

• Two possible responses
 - Stop the program, given an error message
 - Continue; tolerate the exception, possibly repairing the error
An example

- Graph the function
 \[f(x) = \frac{\sin(x)}{x} \]

- \(f(0) = 1 \)
- But we get a singularity @ \(x=0 \): \(1/x = \infty \)
- This is an “accident” in how we represent the function (W. Kahan)
- We *catch* the exception (divide by 0)
- Substitute the value \(f(0) = 1 \)
Denormalized numbers

- We compute if \((a \neq b)\) then \(x = a/(a-b)\)
- We should never divide by 0, even if \(a-b\) is tiny
- Underflow exception occurs when exact result \(a-b < \) underflow threshold \(\text{UN}\)
- We return a denormalized number for \(a-b\)
 - Relax restriction that leading digit is 1: \(\pm 0.d\ldots d \times 2^{\min_{\exp}}\)
 - Fills in the gap between 0 and UN uniform distribution of values
 - Ensures that we never divide by 0
Why is it important to handle exceptions properly?

• Crash of Air France flight #447 in the mid-atlantic
• Flight #447 encountered a violent thunderstorm at 35000 feet and super-cooled moisture clogged the probes measuring airspeed
• The autopilot couldn’t handle the situation and relinquished control to the pilots
• It displayed the message “Invalid Data” without explaining why
• Without knowing what was going wrong, the pilots were unable to correct the situation in time
• The aircraft stalled, crashing into the ocean 3 minutes later
• At 20,000 feet, the ice melted on the probes, but the pilots didn't know this so couldn’t know which instruments to trust or distrust.
Infinities

• $\pm \infty$

• **Overflow exception**
 - Exact finite result is so large, cannot represent accurately
 - Example: $2 \times \text{OV}$

• **Divide by zero exception**
 - Return $\pm \infty = 1/\pm0$

• **Infinities extend the range of mathematical operators**
 - $5 + \infty$, $10 \times \infty \times \infty$
 - No exception: the result is exact
NaN (Not a Number)

- **Invalid exception**
 - Exact result is not a well-defined real number
 - $0/0$, $\sqrt{-1}$, $\infty - \infty$, NaN-10, NaN<2?

- **We can have a quiet NaN or a signalling Nan**
 - Quiet – does not raise an exception, but propagates a distinguished value
 - E.g. missing data: $\max(3,\text{NAN}) = 3$
 - Signaling - generate an exception when accessed
 - Detect uninitialized data
Exception handling - interface

- Each of the 5 exceptions manipulates 2 flags
- Sticky flag set by an exception
 - Remains set until explicitly cleared by the user
 - May be tested by the programmer
- Exception flag: should a trap occur?
 - Be default we don’t trap, continue computing
 \[\text{NaN} \quad \infty \quad \text{denorm} \]
 - If we do, enter a trap handler. accesses arguments in operation that caused the exception
 - Requires precise interrupts, causes problems on a parallel computer, usually not implemented
- We can use exception handling to build faster algorithms
 - Try the faster but “riskier” algorithm (but denorm can be slow)
 - Rapidly test for accuracy (use exception handling)
 - Substitute slower more stable algorithm as needed
 - See Demmel&Li: \url{crd.lbl.gov/~xiaoye}
Summary of representable numbers

- ± 0
- $\pm \infty$

- Normalized nonzeros
 - Not 0 or all 1s

- Denormalized numbers
 - $\pm 0...0$ nonzero

- NaNs
 - Signaling and quiet
 - Often supported as quiet NaNs only
Mixed precision

• Single precision is usually faster than double
 ♦ Sometimes extreme: 1.3 device capability NVIDIA GPUs (x8), STI Cell (x10)
 ♦ Shorter logic delays, less data motion
• Idea: use single precision to get an approximate answer, then finish off with double
 ♦ We can get the same result at the speed of single
 ♦ Or we can get a more accurate answer in the same time
• Example: solving linear systems of equations
 \[\mathbf{A}\mathbf{x}=\mathbf{b} \]
 ♦ Baboulin, Marc, et al. “Accelerating scientific computations with mixed precision algorithms.”
 \textit{Computer Physics Communications} 180(12): 2526-2533, 2009
Anomalous behavior

- Floating point arithmetic is not associative
 \[(x + y) + z \neq x + (y + z)\]

- When we change the number of processors, we can get a different answer, say in reducing an array down to a scalar sumall\((x_i)\)
 - Race conditions, or reordering of arithmetic
 - Can even depend on the compile

- Distributive law doesn’t always hold
- These expressions have different values when \(y \approx z\)
 \[x*y - x*z \neq x(y-z)\]

- Optimizers can’t reason about floating point
- If we compute a quantity in extended precision (80 bits) we lose digits when we store to memory \(y \neq x\)

```c
float x, y=..., z=...;
x = y + z;
y=x;
```
When compiler optimizations alter precision

• Let’s say we support 79+ bit extended format in registers
• When we store values into memory, values truncated to the lower precision format, e.g. 64 bits
• Compilers can keep things in registers and we may lose referential transparency
• An example

  ```
  float x, y, z;
  int j;
  ....
  x = y + z;
  if (x >= j) replace x by something smaller than j
  y = x;
  ```
• With optimization turned on, x is computed to extra precision; it is not a float
• If x < j and held in a register…. no guarantee the condition x < j will be preserved … when x is stored in y, i.e. y >= j
P754 on the GPU

- Cuda Programming Guide (4.1)
 “All compute devices follow the IEEE 754-2008 standard for binary floating-point arithmetic with the following deviations”
 - There is no mechanism for detecting that a floating-point exception has occurred and all operations behave as if the exceptions are always masked… SNaN … are handled as quiet

- Cap. 2.x: FFMA … is an IEEE-754-2008 compliant fused multiply-add instruction … the full-width product … used in the addition & a single rounding occurs during generation of the final result
 - \(\text{rnm}(A \times A + B) \) with FFMA (2.x) vs \(\text{rnm}(\text{rnm}(A \times A) + B) \) FMAD for 1.x

- FFMA can avoid loss of precision during subtractive cancellation when adding quantities of similar magnitude but opposite signs

- Also see *Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs,* by N. Whitehead and A. Fit-Florea
To read further

• W. Kahan’s lecture from 1996
 www.cs.berkeley.edu/~wkahan/ieee754status/cs267fp.ps

• W. Kahan’s “Lecture Notes on IEEE 754”
 www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps

• W. Kahan’s “The Baleful Effects of Computer Benchmarks on Applied Math, Physics and Chemistry
 www.cs.berkeley.edu/~wkahan/ieee754status/baleful.ps
Today’s lecture

• Floating Point
• Particle Methods
The N-body problem

• Compute trajectories of a system of N bodies often called *particles*, moving under mutual influence
 - The Greek word for particle: *somatidion* = “little body”
 - No general analytic (exact) solution when N > 2
 - Numerical simulations required
 - N can ranges from thousands to millions

• A force law governs the way the particles interact
 - We may not need to perform all $O(N^2)$ force computations
 - Introduces non-uniformity due to uneven distributions
Discretization

- Particles move continuously through space and time according to a force, a continuous function of position and time: $F(x,t)$
- We approximate continuous values using a discrete representation
- Evaluate force field at discrete points in time, called *timesteps* Δt, $2\Delta t$, $3\Delta t$

 $\Delta t = \text{discrete time step} \, \text{(a parameter)}$
- “Push” the bodies according to Newton’s third law: $F = ma = m \frac{du}{dt}$
- There is no self induced force

```plaintext
while (current time < end time)
  forall bodies i ∈ 1:N
    compute force $F_i$ induced by all bodies j ∈ 1:N
  // $F = \text{mass} \times \text{Acceleration}$
  forall bodies i ∈ 1:N
    update velocity $v_i$ by $a_i \Delta t$
    update position $x_i$ by $v_i \Delta t$
    current time += $\Delta t$
end
```
Timestep selection

- We approximate the velocity of a particle by the tangent to the particle’s trajectory.
- Since we compute velocities at discrete points in space and time, we approximate the true trajectory by a straight line.
- So long as Δt is small enough, the resultant error is reasonable.
- If not then we might “jump” to another trajectory: this is an error.
Some details

• There is no self induced force
• How should we choose the timestep Δt ?
• We apply numerical criteria to select Δt, based on an analysis of the evolving solution
• Selection may be ongoing, i.e. dynamic
Computing the force

- The running time of the computation is dominated by the force computation, so we ignore the push phase.
- The simplest approach is to use the direct method, with a running time of \(O(N^2) \)

\[
\text{Force on particle } i = \sum_{j=0}^{N-1} F(x_i, x_j)
\]

- \(F(\) \) is the force law.
- One example is the gravitational force law

\[
G \frac{m_i \cdot m_j}{r_{ij}^2} \text{ where } r_{ij} = \text{dist}(x_i, x_j)
\]

\(G \) is the gravitational constant.
Significance of locality

- Many scientific problems exhibit both **spatial** and **temporal locality**, due to the underlying physics
 - The values of the solution at nearby points in space and time are closer than for values at distant points
 - Gravitational interactions decay as $1/r^2$
 - Waves live in a localized region of space at any one time and will appear in a nearby region of space in a nearby point in time
- Numerically speaking, timesteps are “small:” the solution changes gradually
- Let’s consider a more highly localized force

![Diagram of the Andromeda Galaxy from Earth](image)

- r = distance to center of mass
- x = location of center of mass

Jim Demmel, U. C. Berkeley
A localized force law

- As simple repulsive force
- No induced force beyond a *cutoff distance* δ

if $\text{dist}(x_i, x_j) > \delta \Rightarrow F(x, y) = 0$
else

$$F(x, y) = C*(dx, dy)$$

Where

$$C = (0.01/r^2 - 1/r^3)$$

$$r^2 = \max(dx^2 + dy^2, 10^{-6})$$

$$(dx, dy) = (x_j - x_i, y_j - y_i)$$

$$\delta = 0.01$$
Overall simulation

```c
void SimulateParticles()
{
    for( int step = 0; step < nsteps; step++ ) {
        apply_forces(particles,n);

        move_particles(particles,n);

        VelNorms(particles,n,uMax,vMax,uL2,vL2);
    }
}
```
Reducing the cost

- We have to compute the distance check between each pair of particles, even if we don’t compute the force.
- But many particles lay beyond the cutoff.

\[
\text{if } \text{dist}(x_i, x_j) > \delta \Rightarrow F(x, y) = 0
\]

\[
\text{else } F(x, y) = C \cdot (dx, dy)
\]

Where

\[
C = \frac{0.01}{r^2} - \frac{1}{r^3}
\]

\[
r^2 = \max(dx^2 + dy^2, 10^{-6})
\]

\[
(dx, dy) = ((x_j - x_i), (y_j - y_i))
\]

\[
\delta = 0.01
\]
Locality optimization

• We don’t need to compute all the distance tests
• To speed up the search for nearby particles, sort into a chaining mesh (Hockney & Eastwood, 1981)
• Compute forces one box at a time, 8 surrounding cells only
• Still runs in time $O(N^2)$, but have reduced the constant

Jim Demmel, U. C. Berkeley

Scott B. Baden /CSE 260/ Winter 2014
Reducing the cost of the force computation

for(int i = 0; i < nx; i++)
 for(int j = 0; j < ny; j++)
 for (int i0 = -1; i0 < 2; i0++)
 for (int j0 = -1; j0 < 2; j0++)
 Update forces on Box[i,j] from particles in Box [i,j]
Your assignment

• Implement the particle method with MPI
• Next time: MPI