Lecture 10

Stencil Methods

Limits to Performance
Announcements

• Tuesday’s lecture on 2/11 will be moved to room 4140 from 6.30 PM to 7.50 PM
• Office hours are on for today
Today’s lecture

• Stencil methods on the GPU
 ♦ 2D
 ♦ 3D

• Limits to Performance
Hardware in perspective

- Each warp runs as an independent thread of SIMD instructions
- A warp takes two steps to execute, and acts as a 1024-bit SIMD instruction
- 512-bit wide vector SIMD instructions (16x32-bit SIMD lanes)
Thread scheduling

- Assigns independent instructions for processing
- From same or different warp in same or different blocks
Mapping work onto processors

• A grid corresponds to a vectorizable loop
• From the software perspective a thread block ...
 - is a single thread of vector instructions with a programmable vector length (the block size), allowing us to run on devices with different configurations
 - strip mines the loop
• Consider Vector- matrix multiply
 \[\mathbf{A} = \mathbf{B} \mathbf{C} \]
 for \(i = 0 : n - 1 \)
 for \(j = 0 : n - 1 \)
 \[\mathbf{A}[i] += \mathbf{B}[i,j] \times \mathbf{C}[j] \]
Strip mining

- Partitioning the iteration space into chunks

```c
for i = 0 to N-1
    a[i] = b[i] + c[i];

for j = 0 to N-1 by VL
    for i = j to min(N, j+VL) – 1
        a[i] = b[i] + c[i];

int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx]+1.f;
```
Strip mining on the GPU

- Partitioning a thread block into warps corresponds to strip-mining into *independent* instruction streams.

- Traditionally: independent instructions in the *same* instruction stream

```cpp
int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx]+1.f;

for j = 0 to N-1 by VL
   for i = j to min(N, j+VL) – 1
      a[i] = b[i] + c[i];
```
Today’s lecture

• Stencil methods on the GPU
 - 2D
 - 3D
• Limits to Performance
Stencil methods

- Many physical problems are simulated on a uniform mesh in 1, 2 or 3 dimensions
- *Field variables* defined on a discrete set of points
- A *mapping* from ordered pairs to *physical observables* like temperature and pressure
- Important applications
 - Differential equations
 - Image processing
Digital Image Representation

RGB representation

Ryan Cuprak

Photos by Martin Juell

wikipedia
Image smoothing algorithm

- Repeat as many times as necessary

\[
\text{for } (i,j) \text{ in } 0:N-1 \times 0:N-1 \\
I_{\text{new}}[i,j] = \frac{(I[i-1,j] + I[i+1,j] + I[i,j-1] + I[i,j+1])}{4} \\
I = I_{\text{new}}
\]
The Aliev-Panfilov Method

- Models signal propagation in cardiac tissue
 - Demonstrates complex behavior of spiral waves that are known to cause life-threatening situations

- Reaction-diffusion system
 - Reactions are the cellular exchanges of certain ions across the cell membrane during the cellular electrical impulse

- Our simulation has two state variables
 - Transmembrane potential: e
 - Recovery of the tissue: r
The Aliev-Panfilov Model

- Two parts
 - 2 Ordinary Differential Equations
 - Kinetics of reactions occurring at every point in space
 - Partial Differential Equation
 - Spatial diffusion of reactants
- First-order explicit numerical scheme

\[
\frac{\partial e}{\partial t} = \delta \nabla^2 e - ke(e-a)(e-1) - er, \quad \text{on } \Omega_T,
\]

\[
\frac{\partial r}{\partial t} = - \left[\varepsilon + \frac{\mu_1 r}{\mu_2 + e} \right] [r + ke(e-b-1)], \quad \text{on } \Omega_T,
\]

\[\bar{n} \cdot \delta \nabla e = 0 \text{ on } \partial \Omega, \quad \text{and} \quad (e, r)_{t=0} = (e(\cdot, 0), r(\cdot, 0)),\]
Data Dependencies

- **ODE solver:**
 - No data dependency, trivially parallelizable
 - Requires a lot of registers to hold temporary variables

- **PDE solver:**
 - Jacobi update for the 5-point Laplacian operator.
 - Sweeps over a uniformly spaced mesh
 - Updates voltage to weighted contributions from the 4 nearest neighbors

```c
for (j=1; j<=m+1; j++)
{
    _DOUBLE_ *RR = &R[j][1], *EE = &E[j][1];
    for (i=1; i<=n+1; i++, EE++, RR++) {
        // PDE SOLVER
        EE[0] = E_p[j][i] + α*(E_p[j][i+1]+E_p[j][i-1]-4*E_p[j][i]+E_p[j+1][i]
                        +E_p[j-1][i]);
        // ODE Solver
        EE[0] += -dt*(kk*EE[0]*(EE[0]-a)*(EE[0]-1)+EE[0]*RR[0]);
        RR[0] += dt*(ε+M1* RR[0]/( EE[0]+M2))*(-RR[0]-kk*EE[0]*(EE[0]-b-1));
    }
}
```
Naïve CUDA Implementation

• All array references go through device memory
• ./apf -n 6144 -t 0.04, 16x16 thread blocks
 - C1060 (1.3)
 - SP, DP: 22, 13GFlops

#define E' [i,j] E_prev[(j+1)*(m+3) + (i+1)]
I = blockIdx.y*blockDim.y + threadIdx.y;
J = blockIdx.x*blockDim.x + threadIdx.x;
if ((I <= n) && (J <= m))

for (j=1; j<= m+1; j++)
 for (i=1; i<= n+1; i++)
 E[j][i] = E' [j][i]+\alpha*(E' [j][i-1]+E' [j][i+1] +
 E' [j-1][i]+E' [j+1][i] - 4*E' [j][i]);
Using Shared Memory (device cap. 1.3)

Compared to a 2D thread blocking, 1D thread blocks provide a 12% improvement in double precision and 64% improvement in single precision.

Didem Unat
Sliding rows

Sliding rows with 1D thread blocks reduces global memory accesses.

Top row <-- Curr row, Curr row <-- Bottom row Bottom row <-- read new row from global memory

Top Row in Registers

Curr Row in Shared memory

Bottom Row in Registers

Read new row from global memory

Scott B. Baden /CSE 260/ Winter 2014
CUDA Code

__shared__ float block[DIM_Y + 2][DIM_X + 2];
int idx = threadIdx.x, idy = threadIdx.y; //local indices
//global indices
int x = blockIdx.x * (DIM_X) + idx;
int y = blockIdx.y * (DIM_Y) + idy;
idy++; idx++;
unsigned int index = y * N + x;

//interior points
float center = E_prev[index];
block[idy][idx] = center;

__syncthreads();
Copying the ghost cells

if (idy == 1 && y > 0)
 block[0][idx] = E_prev[index - N];
else if(idy == DIM_Y && y < N-1)
 block[DIM_Y+1][idx] = E_prev[index + N];
if (idx==1 && x > 0)
 block[idy][0] = E_prev[index - 1];
else if(idx== DIM_X && x < N-1)
 block[idy][DIM_X +1] = E_prev[index + 1];
__syncthreads();

When loading ghost cells, only some of the threads are active, some are idle.
Thread Mapping for Ghost Cells

- Branches and thread divergence

if(threadIdx.y < 4){
 //read a ghost cell into shared memory
 block[borderIdy][borderIdx] = Uold[index];
}

Ghost cells
When loading ghost cells, only some of the threads are active, some are idle
Ghost Cells (cont.)

- Divide the work between threads so each thread responsible for one ghost cell load
- For 16×16 tile size
 - There are $16\times 4 = 64$ ghost cells
 - Create 64 threads
 - Each thread computes 4 elements in the Y-dim
The stencil computation and ODE

float r = R[index];

float e = center + α * (block[idy][idx-1] + block[idy][idx+1] + block[idy-1][idx] + block[idy+1][idx] - 4*center);

\[e = e - \text{dt} \times (kk \times e \times (e - a) \times (e - 1) + e \times r) \]

E[index] = e;

R[index] = r + \text{dt} \times (\varepsilon + \frac{M1 \times r}{e + M2}) \times (-r - kk \times e \times (e - b - 1));
Results on C1060 (Tesla)

GFlop/s rates for Nehalem and C1060 implementations

<table>
<thead>
<tr>
<th></th>
<th>N=4K</th>
<th>N=16K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 CPU-only</td>
<td>1 GPU</td>
</tr>
<tr>
<td>Single</td>
<td>2.36</td>
<td>124.48</td>
</tr>
<tr>
<td>Double</td>
<td>2.01</td>
<td>25.69</td>
</tr>
<tr>
<td>Speedup over CPU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td>52.84</td>
</tr>
<tr>
<td>Double</td>
<td></td>
<td>12.81</td>
</tr>
</tbody>
</table>

	4 CPUs-only	4 GPUs
Single	7.79	454.47
Double	3.88	102.48
Speedup over CPU		58.32

- Single Precision (22 Gflops w/o optimizations)
 - Nearly saturates the off-chip memory bandwidth
 - Utilizing 98% of the sustainable bandwidth for the Tesla C1060.
 - Achieves 13.3% of the single precision peak performance
 - Single precision performance is bandwidth limited.

- Double Precision (22 Gflops w/o optimizations)
 - 41.5% of the sustainable bandwidth
 - 1/3 of the peak double precision performance
 - Performance hurt by the division operation that appears in ODE
Today’s lecture

• Stencil methods on the GPU
 • 2D
 • 3D

• Limits to Performance
Memory Accesses

Total Memory Accesses = \(4N^2 + \) ghost cells

Number of blocks = \(\frac{N}{d_x} \times \frac{N}{d_y}\)

Total Memory Accesses = \(4N^2 + \frac{N^2}{d_x d_y} \times 2(d_x + d_y)\)

Estimated Kernel Time = Total Mem. Acces (bytes) / Empirical Device Bandwidth
Roofline model

- Establish performance bounds based on
 - Hardware capabilities
 - Arithmetic intensity (q): application requirements and impact of optimizations

\[
\text{Attainable Performance}_{ij} = \min \left\{ \text{FLOP/s with Optimizations}_{1-i}, \qquad q \times \text{Bandwidth with Optimizations}_{1-j} \right\}
\]
Roofline model

- Peak performance as a function of q
- Top line corresponds to theoretical limit based on clock speed
- Lower rooflines correspond to successively degraded performance as we remove optimizations

Scott B. Baden / CSE 260/ Winter 2014
Today’s lecture

• Stencil methods on the GPU
 ◆ 2D
 ◆ 3D
3D Stencils

• More demanding
 - Large strides
 - Curse of dimensionality

2D
Memory Strides

H. Das, S. Pan, L. Chen

Sam Williams et al.
CUDA Thread Blocks

- Split mesh into 3D tiles
- Divide elements in a tile over a thread block
On chip memory optimization

• Copy center plane into shared memory
• Store others in registers
• Move in and out of registers
Rotating planes

- Copy center plane into shared memory
- Store others in registers
- Move in and out of registers
Performance Summary

- $N^3 = 256^3$, double precision

<table>
<thead>
<tr>
<th>GFLOPS</th>
<th>Tesla 1060</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve</td>
<td>8.9</td>
</tr>
<tr>
<td>Shared Memory</td>
<td>15.5</td>
</tr>
<tr>
<td>Sliding Planes</td>
<td>20.7</td>
</tr>
<tr>
<td>Registers</td>
<td>23.6</td>
</tr>
</tbody>
</table>
Multiple Elements in Y-dim

• If we let a thread compute more than one plane, we can assign more than one row in the slowest varying dimension

• Reduces index calculations
 • But requires more registers

• May be advantageous in handling ghost cells
Contributions to Performance

- $N^3 = 256^3$, double precision

<table>
<thead>
<tr>
<th>GFLOPS</th>
<th>Tesla 1060</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve</td>
<td>8.9</td>
</tr>
<tr>
<td>Shared Memory</td>
<td>15.5</td>
</tr>
<tr>
<td>Sliding Planes</td>
<td>20.7</td>
</tr>
<tr>
<td>Registers</td>
<td>23.6</td>
</tr>
<tr>
<td>MultipleY2</td>
<td>26.3</td>
</tr>
<tr>
<td>MultipleY4</td>
<td>26.2</td>
</tr>
</tbody>
</table>
Influence of memory traffic on performance

![Graph showing the relationship between Flops/element and Memory accesses/element. The graph includes data points for different models (Tesla C1060, GTX-280) and operations (MAD, add). The x-axis represents Memory accesses/element, and the y-axis represents Flops/element. Different markers and colors indicate various operations and models.](image)
Generational changes in implementation strategy

• On Fermi, we do not see a large change in performance when we use shared memory! Cache helps!
 ♦ C1060 (1.3) , cseclass01, cseclass05
 ♦ SP: 22, 73, 34 Gflops
 ♦ DP: 13, 45, 20 Gflops

• But on the next generation Kepler we do!
• Global memory references aren’t cached as in Fermi
• Caching used mostly to handle register spills