1. (15 Marks) How many ways can you divide \(n \) identical chocolates among \(k \) children such that each gets at least 2?

2. (20 Marks) How many functions \(f \) are there from \(\{1, \ldots, n\} \) to \(\{-1, 0, 1\} \) such that there exists at least one \(i \in \{1, \ldots, n\} \) where \(f(i) = 0 \).

3. (20 Marks) If \(T(n) = T(n/3) + 15 \) and \(T(1) = 0 \) then guess the expression of \(T(n) \). (Assume that \(T(n) \) is a power of 3.)

4. (15 Marks) Give a closed form expression of \(1 + \binom{n}{1}2 + \binom{n}{2}4 + \cdots + \binom{n}{n}2^n \).

5. (15 Marks) If \(T(n) = T(n - 1) + n \) prove that \(T(n) = n(n + 1)/2 \).

6. (15 Marks) Prove the following statement: \(2^2 + 5^2 + 8^2 + \cdots + (3n + 1)^2 = \frac{1}{2}n(6n^2 + 3n - 1) \)

7. (15 Marks) Prove that for all integer \(n \geq 3 \), \(n^2 - 7n + 12 \geq 0 \).