CSE 21
Lecture 1: Introduction

Instructor: Sourav Chakraborty
TAs and Tutors

- Instructor:
 Sourav Chakraborty (chakraborty.sourav@gmail.com)

- TAs:
 1. Balasundaram Radheshyam (rbalasun@ucsd.edu)
 2. Lawrence Shibu Stanroop (sslawren@ucsd.edu)

- Tutors:
 Will be announced next class
Classes

- **Lecture:** Mon, Wed, Fri 10AM-10:50AM (WLH 2005)

- **Discussions:** Wed 3PM-3:50PM (CENTR 115)

- **Office Hours:**
 - Instructor office hour: by appointment
 - Other office hours to be announced in next class.
Evaluation Process

- Assignments (no marks)

- Quizes
 - Around 6 quizzes.
 - 5% each.
 - Everything will be done on WeBWork.
 - 1st Quiz will be posted on the 10th Jan.

- MidTerm 30%.

- Endterm Term 40%.
Books and references

Textbook for the course is

- Mathematics for Algorithms and Systems Analysis, by E.A.Bender and S.G.Williamson

Also one may refer to the following books:

- A short course in Discrete Mathematics, by E.A.Bender and S.G.Williamson
- Lists, Decisions and Graphs, by E.A.Bender and S.G.Williamson
 http://cseweb.ucsd.edu/~gill/BWLectSite/
- Essentials of Discrete Mathematics, by David Hunter.
Course Outline

Mathematics for Algorithms and Systems Analysis:

- Induction
- Basic Counting
- Functions and Probability
- Decision Tree
- Graph Theory
Objects we encounter

What all things we encounter in Algorithms and System Analysis?
Numbers

- Integers
Numbers

- Integers
- Whole numbers
Numbers

- Integers
- Whole numbers
- Rational numbers
Numbers

- Integers
- Whole numbers
- Rational numbers
- Irrational numbers
Numbers

- Integers
- Whole numbers
- Rational numbers
- Irrational numbers
- Special numbers π and e.
Numbers

- Integers
- Whole numbers
- Rational numbers
- Irrational numbers
- Special numbers π and e.
Numbers with base b

- Usually we represent our number in decimal representation.

 Like: $217 = 2 \times 10^2 + 1 \times 10 + 7$
Numbers with base b

- Usually we represent our number in decimal representation.

 Like: $217 = 2 \times 10^2 + 1 \times 10 + 7$

- One can represent a number in any base.
Numbers with base b

- Usually we represent our number in decimal representation.

 Like: $217 = 2 \times 10^2 + 1 \times 10 + 7$

- One can represent a number in any base.

 Like: $217 = 2 \times 3^4 + 2 \times 3^3 + 0 \times 3^2 + 0 \times 3 + 1$
Numbers with base b

- Usually we represent our number in decimal representation.

 Like: $217 = 2 \times 10^2 + 1 \times 10 + 7$

- One can represent a number in any base.

 Like: $217 = 2 \times 3^4 + 2 \times 3^3 + 0 \times 3^2 + 0 \times 3 + 1$

 Thus $217 = [22001]_3$.
Numbers with base b

- Usually we represent our number in decimal representation.
 Like: $217 = 2 \times 10^2 + 1 \times 10 + 7$

- One can represent a number is any base.
 Like: $217 = 2 \times 3^4 + 2 \times 3^3 + 0 \times 3^2 + 0 \times 3 + 1$

 Thus $217 = [22001]_3$.

- When one represent a number in base 2 it is called binary representation or Boolean Representation.
Boolean Algebra

- Boolean Algebra as two basic digit: 1 and 0.
Boolean Algebra

- Boolean Algebra as two basic digit: 1 and 0.
- One can think of these as *True* and *False*
Boolean Algebra

- Boolean Algebra as two basic digit: 1 and 0.
- One can think of these as *True* and *False*.
- Operations:
 - AND (\(\land\)), OR (\(\lor\)), NOT (\(\neg\)) and XOR (\(\oplus\)).
Representing Data

- Sets

For example:

- Set of names of all students
- Set of letters in the English alphabet
- Set of digits: \{0, 1, \ldots, 9\}

Unordered Sets

Ordered Sets

(Also called LIST/STRINGS/VECTORS)
Sets

For example:

- Set of names of all students
Sets

For example:

- Set of names of all students
- Set of letters in the english alphabet
Representing Data

- **Sets**
 - For example:
 - Set of names of all students
 - Set of letters in the english alphabet
 - Set of digits. \{0, 1, \ldots, 9\} or \{0, 1\}
Representing Data

- Sets
 - For example:
 - Set of names of all students
 - Set of letters in the English alphabet
 - Set of digits: \{0, 1, \ldots, 9\} or \{0, 1\}

- Unordered Sets
Representing Data

- **Sets**
 - For example:
 - Set of names of all students
 - Set of letters in the English alphabet
 - Set of digits: \{0, 1, \ldots, 9\} or \{0, 1\}

- **Unordered Sets**

- **Ordered Sets**
 (Also called LIST/STRINGS/VECTORS)
Let A be a set

A^n is the set of all ordered subsets (with repetitions) A of size n
Cartesian Product

- Let A be a set
- A^n is the set of all ordered subsets (with repetitions) A of size n
- $\{0, 1\}^n$ the set of all “strings” of 0 and 1 of length n.
Representing Data: functions

Given a set D (domain) and a set R (range) a function is a map from D to R such that every element in D has a unique image in R.

For example: $f: \{0, 1\} \to \{0, 1\}$ such that $f(x) = 1$ iff x has an even number of 1.
Given a set D (domain) and a set R (range) a function is a map from D to R such that every element in D has a unique image in R.

Thus for all $x \in D$, $f(x) \in R$ and is well defined.
Representing Data: functions

Given a set D (domain) and a set R (range) a function is a map from D to R such that every element in D has a unique image in R.

Thus for all $x \in D$, $f(x) \in R$ and is well defined.

For example:

$f : \{0, 1\}^n \rightarrow \{0, 1\}$ such that

$f(x) = 1$ iff x has even number of 1.
Q: How many elements are there in the set \(\{0, 1\}^n\)?
A little bit of counting

Q: How many elements are there in the set \(\{0, 1\}^n \)?
Ans: \(2^n \).
Q: How many elements are there in the set \(\{0, 1\}^n \)?
Ans: \(2^n \).

Q: How many functions are there from the set \(\{0, 1\}^n \) to \(\{0, 1\} \)?
A little bit of counting

Q: How many elements are there in the set \(\{0, 1\}^n \)?
Ans: \(2^n \).

Q: How many functions are there from the set \(\{0, 1\}^n \) to \(\{0, 1\} \)?
Ans: \(2^{2^n} \).