CSE 21: Assignment Set 2

1. Prove that

\[
\sum_{i=0}^{k-1} ab^i = a \frac{b^k - 1}{b - 1}
\]

2. Prove that

\[
\sum_{i=0}^{k} (a + ib) = \frac{2a + kb}{2}(k + 1).
\]

3. Let \(n > 1 \) be an integer. In a football league there are \(n \) teams. Every two teams have played against each other exactly once, and in match no draw is allowed. Prove that it is possible to number the teams in such a way that team \(i \) beats \((i + 1)\) for \(i = 1, 2, \ldots, n - 1 \).

4. Prove that \(2002^{n+2} + 2003^{2n+1} \) is divisible by 4005.

5. The Fibonacci sequence is defined as \(x_0 = 0, x_1 = 1 \) and \(x_{n+2} = x_{n+1} + x_n \) for all non-negative integers \(n \). Prove that

 (a) \(x_m = x_{r+1}x_{m-r} + x_rx_{m-r-1} \) for all integers \(m \geq 1 \) and \(0 \leq r \leq m - 1 \);

 (b) \(x_d \) divides \(x_{kd} \) for all positive integers \(d \) and \(k \).

6. (Hard Problem) For natural number \(p \) and \(q \), the Ramsey number \(R(p, q) \) is defined as the smallest integer \(n \) so that among any \(n \) people, there exist \(p \) of them who know each other, or there exist \(q \) of them who don’t know each other. Prove that Note that \(R(p, 1) = R(1, q) = 1 \). Prove that:

 (a) \(R(p + 1, q + 1) \leq R(p, q + 1) + R(p + 1, q) \)

 (b) \(R(p, q) \leq C_p^{p+q-2} \)