CSE 21: Assignment Set 1

1. Prove that there is an unique representation of any positive integer in any base \(b \). State the problem in mathematical terms and then prove it.

2. What is the maximum integer that can be represented in base 2 using only 10 bits (that is, what is the largest integer which when represented in base 2 has at most length 10 representation).

3. Write down the truth table of the function \(f : \{0, 1\}^3 \to \{0, 1\} \), where

\[
f(x_1, x_2, x_3) = (x_1 \lor x_2) \land x_3.
\]

4. Let \(x > -1 \) be a real number. Prove that \((1 + x)^n \geq 1 + nx \) for all natural numbers \(n \).

5. Prove that \(\sum_{i=1}^{n} i \times i! = (n + 1)! - 1 \).

6. Let \(\{a_n\} \) be a sequence of natural numbers such that \(a_1 = 5, a_2 = 13 \) and \(a_{n+2} = 5a_{n+1} - 6a_n \) for all natural numbers \(n \). Prove that \(a_n = 2^n + 3^n \) for all natural number \(n \).

7. Let \(n > 1 \) be an integer. In a football league there are \(n \) teams. Every two teams have played against each other exactly once, and in match no draw is allowed. Prove that it is possible to number the teams in such a way that team \(i \) beats \((i + 1) \) for \(i = 1, 2, \ldots, n - 1 \).