1. Let \(r = "\text{she registered to vote}" \) and \(v = "\text{she voted}" \). Write the following statement in symbolic form: She registered to vote but she did not vote.

"She registered to vote" AND "she did not vote"
"She registered to vote" AND NOT ("she voted")

Answer: \(r \land \sim v \)

2. Make a truth table for \((p \lor (\sim p \lor q)) \land (q \land \sim r)\)

I will show two ways to do this problem. The first way involves only filling a truth table. The second way involves algebraic manipulations before making the truth table.

Method 1

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(\sim p)</th>
<th>(\sim p \lor q)</th>
<th>(p \lor (\sim p \lor q))</th>
<th>(\sim r)</th>
<th>(q \land \sim r)</th>
<th>(\sim (q \land \sim r))</th>
<th>((p \lor (\sim p \lor q)) \land (q \land \sim r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Method 2

Note: This method uses the algebraic rules for boolean functions (Theorem 2 BF-6 of textbook). I tried to be as clear as possible by writing out every rule that was used in separate steps.

\[(p \lor (\sim p \lor q)) \land (q \land \sim r)\]

\[
\begin{align*}
(p \lor (\sim p \lor q)) & \sim (q \land \sim r) \\
((p \lor \sim p) \lor q) & \sim (q \land \sim r) \\
(T \lor q) & \sim (q \land \sim r) \\
T & \sim (q \land \sim r) \\
T \land (\sim q \lor \sim r) & \text{DeMorgan’s rule} \\
T \land (\sim q \lor r) & \text{double negation} \\
\sim q \lor r & \text{bound rule}
\end{align*}
\]

This means that the truth table for \((p \lor (\sim p \lor q)) \land (q \land \sim r)\) is equivalent to \(\sim q \lor r\) so we can make a much simpler table.
3. Using DeMorgan’s rule, state the negation of the statement: “The car is out of gas or the fuel line is plugged.”

Let \(p = \) “the car is out of gas” and \(q = \) “the fuel line is plugged.” Then, the statement \(s = p \lor q \). The negation of \(s \) is \(\sim s = \sim (p \lor q) = \sim p \land \sim q \) by DeMorgan’s rule. So the negation reads “The car is not out of gas and the fuel line is not plugged.”

4. A pair of numbers \(x \) and \(y \) satisfy a system of inequalities if

\[
\begin{align*}
3 &\leq x \leq 5 \\
|x - y| &< 1.
\end{align*}
\]

What are the conditions under which \(x \) and \(y \) fail to satisfy this system?

This system can also be written as a conjunction of two statements. Let \(p = 3 \leq x \leq 5 \) and \(q = |x - y| < 1 \). Then \(\sim (p \land q) = \sim p \lor \sim q \) by DeMorgan’s rule. So system fails when \(x < 3 \) or \(x > 5 \) or \(|x - 1| \geq 1 \)

5. Is the function \((p \land (\sim (p \lor q))) \lor (p \land q) \) equal to the function \(p \lor q \)? Why or why not?

Answer: No.

Like question 2, I will use two methods to answer this question. The first way is uses truth tables and the second way uses the algebraic rules.

Method 1

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
p & q & \sim p & \sim p \lor q & \sim (p \lor q) & p \land (\sim (p \lor q)) & p \land q & (p \land (\sim (p \lor q))) \lor (p \land q) \\
\hline
T & T & F & T & F & F & T & T \\
T & F & F & T & T & T & F & T \\
F & T & F & F & T & F & F & T \\
F & F & T & F & F & F & F & F \\
\hline
\end{array}
\]

The last two columns of the table are not the same, and thus, the two statements are not equivalent.

Method 2
6. If \(a \) and \(b \) are two positive integers then prove that \(a^2 - 4b \) cannot be equal to 2. (Hint: Prove using contradiction.)

Proof. Suppose for contradiction that \(a \) and \(b \) are positive integers and that \(a^2 - 4b = 2 \). Subtracting 4\(b \) from both sides gives us \(a^2 = 2 + 4b = 2(1 + 4b) \). Since 1 + 4\(b \) is an integer, \(a^2 \) must be even, which means that \(a \) must be even. So, we can write \(a = 2c \), where \(c \) is an integer. Substituting 2\(c \) for \(a \), we get

\[
(2c)^2 - 4b = 2 \\
4c^2 - 4b = 2 \\
2c^2 - 2b = 1 \\
2(c^2 - b) = 1
\]

The lefthand side of this equation is even, but the righthand side is odd, which is a contradiction. \(\square \)