Introduction to Computer Vision
CSE 152
Lecture 7
Binary Tracking for Robot Control
Binary System Summary

1. Acquire images and binarize (threshholding, color labels, etc.).
2. Possibly clean up image using morphological operators.
3. Determine regions (blobs) using connected component exploration.
4. Compute position, area, and orientation of each blob using moments.
5. Compute features that are rotation, scale, and translation invariant using Moments (e.g., Eigenvalues of normalized moments).
Histogram-based Segmentation

Ex: bright object on dark background:

- Select threshold
- Create binary image:
 \[I(x,y) < T \rightarrow O(x,y) = 0 \]
 \[I(x,y) \geq T \rightarrow O(x,y) = 1 \]

[From Octavia Camps]
How do we select a Threshold?

- Manually determine threshold experimentally.
 - Good when lighting is stable and high contrast.
- Automatic thresholding
 - P-tile method
 - Mode method
 - Peakiness detection
P-Tile Method

- If the size of the object is approx. known, pick T s.t. the area under the histogram corresponds to the size of the object:

[From Octavia Camps]
Mode Method

• Model intensity in each region R_i as “constant” $+ \mathcal{N}(0, \sigma_i)$:

$$I(x, y) = \mu_i + n_i(x, y)$$

$$p(n_i) = \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{1}{2} \frac{n_i^2}{\sigma_i^2}}$$

$$E(n_i) = 0 \quad E(n_i^2) = \sigma_i^2$$

[From Octavia Camps]
Example: Image with 3 regions

If above image is noisy, histogram looks like

Ideal histogram:

• Approximate histogram as being comprised of multiple Gaussian modes.
 • How many modes?
 • Where are they centered, width

• Alternatively, the valleys are good places for thresholding to separate regions.

[From Octavia Camps]
Finding the peaks and valleys

• It is a not trivial problem: [From Octavia Camps]
“Peakiness” Detection Algorithm

- Find the two **HIGHEST LOCAL MAXIMA** that **MINIMUM DISTANCE APART**: g_i and g_j
- Find **lowest point** between them: g_k
- Measure “peakiness”:
 - $\min(H(g_i), H(g_j))/H(g_k)$
- Find (g_i, g_j, g_k) with highest peakiness
Regions
What is a region?

• “Maximal connected set of points in the image with same brightness value” (e.g., 1)

• Two points are *connected* if there exists a continuous path joining them.

• Regions can be *simply connected* (For every pair of points in the region, all smooth paths can be smoothly and continuously deformed into each other). Otherwise, region is *multiply connected* (holes)
Connected Regions

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What are the connected regions in this binary image?
- Which regions are contained within which region?
• What the connected regions in this binary image?
• Which regions are contained within which region?
Four & Eight Connectedness

Four Connected

Eight Connected
Jordan Curve Theorem

• “Every closed curve in \mathbb{R}^2 divides the plane into two regions, the ‘outside’ and ‘inside’ of the curve.”
Problem of 4/8 Connectedness

• 8 Connected:
 – 1’s form a closed curve, but background only forms one region.

• 4 Connected
 – Background has two regions, but ones form four “open” curves (no closed curve)
To achieve consistency w.r.t. Jordan Curve Theorem

1. Treat background as 4-connected and foreground as 8-connected.

2. Use 6-connectedness
Recursive Labeling

Connected Component Exploration

Procedure Label (Pixel)
BEGIN
 Mark(Pixel) <- Marker;
 FOR neighbor in Neighbors(Pixel) DO
 IF Image(neighbor) = 1 AND Mark(neighbor)=NIL THEN
 Label(neighbor)
 END
 END
END

BEGIN Main
 Marker <- 0;
 FOR Pixel in Image DO
 IF Image(Pixel) = 1 AND Mark(Pixel)=NIL THEN
 BEGIN
 Marker <- Marker + 1;
 Label(Pixel);
 END;
 END
 END

Globals:
Marker: integer
Mark: Matrix same size as Image, initialized to NIL
Recursive Labeling
Connected Component Exploration

1 2
Some notes

• Once labeled, you know how many regions (the value of Marker)
• From Mark matrix, you can identify all pixels that are part of each region (and compute area)
• How deep does stack go?
• Iterative algorithms (See reading from Horn)
• Parallel algorithms
Properties extracted from binary image

• A tree showing containment of regions
• Properties of a region
 1. Genus – number of holes
 2. Centroid
 3. Area
 4. Perimeter
 5. Moments (e.g., measure of elongation)
 6. Number of “extrema” (indentations, bulges)
 7. Skeleton
Moments

Given a pair of non-negative integers \((j,k)\) the discrete \((j,k)\)th moment of \(S\) is defined as:

\[
M_{jk}(S) = \sum_{(x,y) \in S} x^j y^k
\]

The region \(S\) is defined as:

\[
S = \{(x, y) | B(x, y) = 1\}
\]

- Fast way to implement computation over \(n\) by \(m\) image or window
- One object
Area: Moment M_{00}

$$S = \{(x, y) | f(x, y) = 1\}$$

$$M_{jk}(S) = \sum_{(x, y) \in S} x^j y^k$$

Example:

$$M_{00}(S) = \sum_{(x, y) \in S} x^0 y^0 = \sum_{(x, y) \in S} 1 = \#(S)$$

Area of S !!

$$M_{0,0} = \sum_{x=1}^{n} \sum_{y=1}^{m} B(x, y)$$

- Fast way to implement computation over n by m image or window
- One object
Moments: Centroid

$S = \{(x, y) | f(x, y) = 1\}$

$M_{jk}(S) = \sum_{(x,y)\in S} x^j y^k$

Example:

$M_{10}(S) = \sum_{(x,y)\in S} x^1 y^0 = \sum_{(x,y)\in S} x$

$M_{01}(S) = \sum_{(x,y)\in S} x^0 y^1 = \sum_{(x,y)\in S} y$

Center of gravity (centroid) of S !!
Shape recognition by Moments

Recognition could be done by comparing moments

However, moments M_{jk} are not invariant under:

- Translation
- Scaling
- Rotation
- Skewing
Central Moments

Given a pair of non-negative integers \((j,k)\) the central \((j,k)^{th}\) moment of \(S\) is given by:

\[
S = \{(x, y)| f(x, y) = 1\}
\]

\[
\bar{x} = \frac{M_{10}(S)}{M_{00}(S)} \quad \bar{y} = \frac{M_{01}(S)}{M_{00}(S)}
\]

Or the central moments can be computed from precomputed regular moments

\[
\mu_{jk}(S) = \sum_{(x,y) \in S} (x - \bar{x})^j (y - \bar{y})^k
\]

Or the central moments can be computed from precomputed regular moments

\[
\mu_{jk} = \sum_{m=1}^{j} \sum_{n=1}^{k} \binom{j}{m} \binom{k}{n} (-\bar{x})^{(j-m)} (-\bar{y})^{(k-n)} M_{mn}
\]
Central Moments

\[S = \{ (x, y) | f(x, y) = 1 \} \]

\[\mu_{jk}(S) = \sum_{(x,y) \in S} (x - \bar{x})^j (y - \bar{y})^k \]

Translation by \(T = (a, b) \):

\[S_T = \{ (x^*, y^*) | x^* = x + a, y^* = y + b, (x, y) \in S \} \]

\[\bar{x}^* = \frac{M_{10}(S_T)}{M_{00}(S_T)} = \bar{x} + a \quad \bar{y}^* = \frac{M_{01}(S_T)}{M_{00}(S_T)} = \bar{y} + b \]

\[\mu_{jk}(S_T) = \mu_{jk}(S) \]

Translation IN Variant!
Normalized Moments

Given a pair of non-negative integers \((j, k)\) the \textit{normalized} \((j, k)\)th \textit{moment} of \(S\) is given by:

\[
\mu_{jk}(S) = \sum_{(x,y)\in S} (x - \bar{x})^j (y - \bar{y})^k
\]

\[
\sigma_x = \sqrt{\frac{\mu_{20}(S)}{M_{00}(S)}} \quad \sigma_y = \sqrt{\frac{\mu_{02}(S)}{M_{00}(S)}}
\]

Given a pair of non-negative integers \((j, k)\) the \textit{normalized} \((j, k)\)th \textit{moment} of \(S\) is given by:

\[
m_{jk}(S) = \sum_{(x,y)\in S} \left(\frac{x - \bar{x}}{\sigma_x}\right)^j \left(\frac{y - \bar{y}}{\sigma_y}\right)^k
\]

Normalized moments are scale and translation invariant for \((j+k) > 1\)
Normalized Moments

\[S = \{(x, y) | f(x, y) = 1\} \]

Scaling by \((a, c)\) and translating by \(T = (b, d)\):

\[S_{ST} = \{(x^*, y^*) | x^* = ax + b, y^* = cy + d, (x, y) \in S\} \]

\[m_{jk}(S_{ST}) = m_{jk}(S) \]

Scaling and translation INVARIANT!
Region orientation from Second Moment Matrix

1. Compute second centralized moment matrix

\[
\begin{bmatrix}
\mu_{20} & \mu_{11} \\
\mu_{11} & \mu_{02}
\end{bmatrix}
\]

- Symmetric, positive definite matrix
- Positive Eigenvalues
- Orthogonal Eigenvectors

2. Compute Eigenvectors of Moment Matrix to obtain orientation

3. Eigenvalues are independent of orientation, translation!
Binarization using Color

- Object’s in robocup are distinguished by color.

- How do you binarize the image so that pixels where ball is located are labeled with 1, and other locations are 0?

- Let \(C_b=(r\ g\ b)^T \) be the color of the ball.
Binarization using Color

• Let $c(u,v)$ be the color of pixel (u,v)

• Simple method

$$ b(u,v) = \begin{cases}
1 & \text{if } (\|c(u,v) - c_b\|)^2 \leq \varepsilon \\
0 & \text{otherwise}
\end{cases} $$

• Better alternative (why?)
 – Convert $c(u,v)$ to HSV space $H(u,v)$, $S(u,v)$ $V(u,v)$
 – Convert c_b to HSV
 – Check that HS distance is less than threshold ε and brightness (V) is greater than a threshold $V > \tau$
Color Blob tracking

• Color-based tracker gets lost on white knight: Same Color