Problem 1

For any string $w = w_1w_2\ldots w_n$, let $w^r = w_n\ldots w_2w_1$ be the reverse of w, i.e., w written backward. The reverse of a language $L^r = \{w^r : w \in L\}$ is defined reversing each string individually. Consider the set

$$P_{TM} = \{ \langle M \rangle : M \text{ is a TM with alphabet } \{0, 1\} \text{ such that } L(M)^r = L(M) \}$$

of all Turing machines whose recognized language is closed under reverse.

(a) Give a map reduction from A_{TM} to the complement of P_{TM}, and prove that your reduction is correct.

(b) Give a map reduction from A_{TM} to P_{TM}, and prove that your reduction is correct.

(c) Based on your answers to part (a) and (b), answer the following questions: Is P_{TM} recognizable? If P_{TM} co-recognizable? You answer to each question can be “yes”, “no”, or “it does not follow from parts (a) and (b)”.

Problem 2

Prove or disprove each of the following statements:

(a) for any language L other than \emptyset and Σ^*, there is a map reduction from L to the complement of L.

(b) for any language L other than \emptyset and Σ^*, if there is a map reduction from L to the complement of L, then L is either decidable, or neither recognizable nor co-recognizable.

(c) for any language L other than \emptyset and Σ^*, if L is decidable, then there is a map reduction from L to the complement of L.

Problem 3

Let L be the set of all strings of the form $\langle M_1, M_2 \rangle$ where M_1, M_2 are Turing machines, and $L(M_1) \subseteq L(M_2)$.

(a) Determine if L is recognizable or not, and prove your answer using map reductions.

(b) Determine if L is co-recognizable or not, and prove your answer using map reductions.