CSE 160
Lecture 25

Programming
Graphical Processing Units
Announcements

• Midterm review on Weds @Rady school
• Section: Thursday @ 5pm csb 004
 ‣ Bring question for me to answer, problems to work out
Today’s lecture

• Programming with CUDA
 ‣ Avoiding thread divergence
• Aliev Panfilov method in CUDA
CUDA

- Programming environment with extensions to C
- Under control of the *host*, invoke sequences of multithreaded *kernels* on the *device* (GPU)
- Many lightweight *virtualized* threads
- CUDA: programming environment + C extensions
The CUDA Programmer’s Goals

- Use the parallelism, else we lose it
- Avoid costly branches, or render them harmless
- **Cut data motion costs**
 - Hide latency of host ↔ device memory transfers
 - Global memory accesses → fast on-chip accesses
 - Coalesced memory transfers
- Tradeoff: more blocks with fewer threads or more threads with fewer blocks
 - Locality: want small blocks of data (and hence more plentiful warps) that fit into fast memory
 - Register consumption
 - Scheduling: hide latency
Streaming processor cluster

- GTX-280 GPU
 10 clusters @ 3 streaming multiprocessors or vector cores
- Each vector core
 - 8 scalar cores: fused multiply adder + multiplier (32 bits), truncate intermediate rslt
 - Shared memory (16KB) and registers (16K × 32 bits = 64KB)
 - 1 64-bit fused multiply-adder + 2 super function units (2 fused multiply-adders)
 - 1 FMA + 1 multiply per cycle = 3 flops / cycle / core * 240 cores = 720 flops/cycle
 @1.296 Ghz: 933 GFLOPS
Memory Hierarchy

<table>
<thead>
<tr>
<th>Name</th>
<th>Latency (cycles)</th>
<th>Cached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>DRAM – 100s</td>
<td>No</td>
</tr>
<tr>
<td>Local</td>
<td>DRAM – 100s</td>
<td>No</td>
</tr>
<tr>
<td>Constant</td>
<td>1s – 10s – 100s</td>
<td>Yes</td>
</tr>
<tr>
<td>Texture</td>
<td>1s – 10s – 100s</td>
<td>Yes</td>
</tr>
<tr>
<td>Shared</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>Register</td>
<td>1</td>
<td>--</td>
</tr>
</tbody>
</table>

Courtesy David Kirk/NVIDIA and Wen-mei Hwu/UIUC
Thread execution

- **Thread Blocks**
 - Unit of workload assignment
 - Each thread has its own set of registers
 - All have access to a fast on-chip *shared memory*
 - Synchronization only among all threads in a block
 - Threads in different blocks communicate via slow global memory
 - Processor groups threads into *warps* of 32 threads

- **SIMT parallelism**: all threads in a warp execute the same instruction
 - All branches followed
 - Instructions disabled
 - Divergence, serialization

KernelA<<<2,3>,<3,5>>>()
Today’s lecture

- Programming with CUDA
 - Avoiding thread divergence
- Aliev Panfilov method in CUDA
Thread divergence

• All the threads in a warp execute the same instruction
• Different control paths are serialized
Divergence example

```c
if (threadIdx >= 2)
    a=100;
else
    a=-100;
```

```
compare threadIdx, 2
```

Mary Hall
Divergence example

if (threadIdx >= 2)
 a=100;
else
 a=-100;

Mary Hall
Divergence example

if (threadIdx >= 2)
 a=100;
else
 a=-100;

Mary Hall
Example of thread Divergence

• Divergence when predicate is a function of the threadId, branch granularity > warp size
 if (threadId < 2) {}

• No divergence if all follow the same path within a warp branch granularity > warp size
 if (threadId / WARP_SIZE < 2) {}

• But there are different control paths within the block

• Consider reduction, e.g. summation $\sum_i x_i$
Example – reduction – thread divergence

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

0 1 2 3 4 5 6 7 8 9 10 11

0+1 2+3 4+5 6+7 8+9 10+11

0...3 4..7 8..11

0..7 8..15

©2013 Scott B. Baden / CSE 160 / Winter 2013
The naïve code

```c
__global__ void reduce(int *input, unsigned int N, int *total){
    unsigned int tid = threadIdx.x;
    unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

    __shared__ int x[BSIZE];
    x[tid] = (i<N) ? input[i] : 0;
    __syncthreads();

    for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) {
        __syncthreads();
        if (tid % (2*stride) == 0)
            x[tid] += x[tid + stride];
    }

    if (tid == 0) atomicAdd(total,x[tid]);
}
```
Occupancy

- A minimum number of warps needed to hide memory latency
- **Occupancy**: \(\frac{\# \text{ active warps}}{\text{max}\ # \text{ warps supported by vector unit}} \)
- Limited by vector unit resources
 - Amount of shared memory
 - Number of registers
 - Maximum number of threads

- Consider a kernel (16x16 block size)
 - Shared memory/block = 2648 bytes
 - Reg/thread = 38 \([38*256 = 9728 \text{ } < 16k]\)
 - # available registers is the limiting factor

- Tradeoff: more blocks with fewer threads or more threads with fewer blocks
 - Locality: want small blocks of data (and hence more plentiful warps) that fit into fast memory
 - Register consumption

- Maximizing the occupancy may not maximize performance
Reducing divergence and (also avoids memory bank conflicts)
The improved code

- All threads in a warp execute the same instruction

 \[\text{reduceSum} \lll N/512, 512 \rrr (x, N) \]

- No divergence until stride < 32

- All warps active when stride ≥ 32

```c
__shared__ int x[ ];
  unsigned int tid = threadIdx.x;
  unsigned int s;

for (stride = blockDim.x/2;
     stride > 1;
     stride /= 2) {

  __syncthreads();

  if (tid < stride)
    x[tid] += x[tid + stride];
}
```

```c
for (stride = 1;
    stride < blockDim.x;
    stride *= 2) {

  __syncthreads();

  if (tid % (2*stride) == 0)
    x[tid] += x[tid + stride];
}
```
Today’s lecture

- Programming with CUDA
 - Avoiding thread divergence
- Aliev Panfilov method in CUDA
The Aliev-Panfilov Method

• Models signal propagation in cardiac tissue
 ‣ Demonstrates complex behavior of spiral waves that are known to cause life-threatening situations

• Reaction-diffusion system
 ‣ Reactions are the cellular exchanges of certain ions across the cell membrane during the cellular electrical impulse

• Our simulation has two state variables
 ‣ Transmembrane potential: e
 ‣ Recovery of the tissue: r
The Aliev-Panfilov Model

• Two parts
 ‣ 2 Ordinary Differential Equations
 • Kinetics of reactions occurring at every point in space
 ‣ Partial Differential Equation
 • Spatial diffusion of reactants

• First-order explicit numerical scheme

\[
\frac{\partial e}{\partial t} = \delta \nabla^2 e - ke(e-a)(e-1) - er, \quad \text{on } \Omega_T,
\]
\[
\frac{\partial r}{\partial t} = - \left[\varepsilon + \frac{\mu_1 r}{\mu_2 + e} \right] [r + ke(e-b-1)], \quad \text{on } \Omega_T,
\]
\[
\vec{n} \cdot \delta \nabla e = 0 \text{ on } \partial \Omega, \quad \text{and} \quad (e, r)_{t=0} = (e(\cdot, 0), r(\cdot, 0)),
\]
Data Dependencies

- **ODE solver:**
 - No data dependency, trivially parallelizable
 - Requires a lot of registers to hold temporary variables

- **PDE solver:**
 - Jacobi update for the 5-point Laplacian operator.
 - Sweeps over a uniformly spaced mesh
 - Updates voltage to weighted contributions from the 4 nearest neighbors

```c
for (j=1; j<=m+1; j++){
    double *RR = &R[j][1], *EE = &E[j][1];
    for (i=1; i<=n+1; i++, EE++, RR++) {
        // PDE Solver
        E[0] = E_p[j][i]+α*(E_p[j][i+1]+E_p[j][i-1]-4*E_p[j][i]+E_p[j+1][i]+E_p[j-1][i]);
        // ODE Solver
        EE[0] += -dt*(kk*EE[0]*(EE[0]-a)*(EE[0]-1)+EE[0]*RR[0]);
        RR[0] += dt*(ε+M1* RR[0]/( EE[0]+M2))*(-RR[0]-kk*EE[0]*(EE[0]-b-1));
    }
}
```
Naïve CUDA Implementation

- All array references go through device memory
- ./apf -n 6144 -t 0.04, 16x16 thread blocks
 - Tesla C1060, capability: 1.3
 - SP: 22, 73, 34 GFlops [E5504, 32 cores, MPI: 85GF]
 - DP: 13, 45, 20 GFlops (19GF n=8192) [E5504: 48 GF]

```c
#define E'[i,j] E_prev[(j+1)*(m+3) + (i+1)]
I = blockIdx.y*blockDim.y + threadIdx.y;
J = blockIdx.x*blockDim.x + threadIdx.x;
if ((I <= n) && (J <= m))
```

```c
for (j=1; j<= m+1; j++)
    for (i=1; i<= n+1; i++)
        E[j][i] = E'[j][i] + \alpha*(E'[j][i-1] + E'[j][i+1] + E'[j-1][i] + E'[j+1][i] - 4*E'[j][i]);
```
Using Shared Memory

- Create 1D thread block to process 2D data block
- Iterate over rows in y dim
- While first and last threads read ghost cells, others are idle

Compared to a 2D thread blocking, 1D thread blocks provide a 12% improvement in double precision and 64% improvement in single precision

Didem Unat
Sliding rows

Sliding rows with 1D thread blocks reduces global memory accesses.

Sliding row algorithm

Top Row in Registers

Curr Row in Shared memory

Bottom Row in Registers

Top row <- Curr row,
Curr row <- Bottom row
Bottom row <- read new row from global memory

Read new row from global memory
CUDA Code

```c
__shared__ float block[DIM_Y + 2][DIM_X + 2];
int idx = threadIdx.x, idy = threadIdx.y; //local indices
//global indices
int x = blockIdx.x * (DIM_X) + idx;
int y = blockIdx.y * (DIM_Y) + idy;
idy++; idx++;
unsigned int index = y * N + x;

//interior points
float center = E_prev[index];
block[idy][idx] = center;

__syncthreads();
```
Copying the ghost cells

When loading ghost cells, only some of the threads are active, some are idle

```c
if (idy == 1 && y > 0 )
    block[0][idx]= E_prev[index - N];
else if(idy == DIM_Y && y < N-1)
    block[DIM_Y+1][idx] = E_prev[index + N];
if ( idx==1 && x > 0 )
    block[idx][0] = E_prev[index - 1];
else if( idx== DIM_X && x < N-1 )
    block[idy][DIM_X +1] = E_prev[index + 1];
__syncthreads();
```
The stencil computation and ODE

float r = R[index];

float e = center + α * (block[idy][idx-1] + block[idy][idx+1] +
 block[idy-1][idx] + block[idy+1][idx] - 4*center);

 e = e - dt*(kk * e * (e - a) * (e - 1) + e * r);

E[index] = e;

R[index] = r + dt *(ε+ M1 * r / (e + M2)) * (-r - kk * e * (e - b - 1));
Results on C1060 (Tesla)

GFlop/s rates for Nehalem and C1060 implementations

<table>
<thead>
<tr>
<th></th>
<th>N=4K</th>
<th>1 CPU-only</th>
<th>1 GPU</th>
<th>Speedup over CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>2.36</td>
<td>124.48</td>
<td>52.84</td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>2.01</td>
<td>25.69</td>
<td>12.81</td>
<td></td>
</tr>
<tr>
<td>N=16K</td>
<td>4 CPUs-only</td>
<td>4 GPUs</td>
<td>Speedup over CPU</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>7.79</td>
<td>454.47</td>
<td>58.32</td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>3.88</td>
<td>102.48</td>
<td>26.41</td>
<td></td>
</tr>
</tbody>
</table>

- Single Precision
 - Nearly saturates the off-chip memory bandwidth
 - Utilizing 98% of the sustainable bandwidth for the Tesla C1060.
 - Achieves 13.3% of the single precision peak performance
 - Single precision performance is bandwidth limited.

- Double Precision
 - 41.5% of the sustainable bandwidth
 - 1/3 of the peak double precision performance
 - Performance hurt by the division operation that appears in ODE
Memory Accesses

Total Memory Accesses = 4N^2 + ghost cells

Number of Tiles = N / Δx * N / Δy

Total Memory Accesses = 4N^2 + N^2/(Δx Δy) × 2(Δy +Δy) × sizeof(element)

Estimated Kernel Time = Total Mem. Acc. (bytes) / Empirical Device Bandwidth