CSE 160
Lecture 13

Sorting
Announcements

• No Lab in APM this Friday
• Quiz return
Today’s Lecture

- Parallel Sorting (II)
 - Bucket Sort
 - Sample Sort
 - Bitonic Sort
Parallel sorting

• We’ll consider in-memory sorting of integer keys
 ‣ Bucket sort
 ‣ Sample sort
 ‣ Bitonic sort

• In practice, we sort on external media, i.e. disk
 ‣ See: http://sortbenchmark.org
 ‣ TritonSort (UCSD): 0.725×10^{12} bytes/minute
Rank Sorting

• Compute the rank of each input value
• Move each value in sorted position according to its rank
• Makes idealizing assumptions
 ‣ An ideal parallel computer with no memory contention and an infinite number of processors
 ‣ The forall loops parallelize perfectly

```plaintext
forall i=0:n-1, j=0:n-1
  if ( x[i] > x[j] ) then rank[i] += 1 end if
forall i=0:n-1
  y[rank[i]] = x[i]
```
In search of a fast and practical sort

- Rank sorting is impractical on real hardware
- Let’s borrow the concept: compute the thread owner for each key
- Shuffle data in sorted order in one step
- But how do we know which thread should be the owner?
- Subdivide the key space
1st attempt: bucket sort

- Divide the range of keys into equal subranges and associate a bucket with each range
- Each processor maintains p local buckets
 - Assigns each key to a bucket: $\left\lfloor \frac{p \times \text{key}}{(K_{\text{max}}-1)} \right\rfloor$
 - Routes the buckets to the correct owner (each local bucket has $\sim \frac{n}{p^2}$ elements)
 - Sort all incoming data into a single bucket
Running time

- Assume that the keys are distributed uniformly over 0 to $K_{\text{max}} - 1$
- Local bucket assignment: $O(n/p)$
- Route each local bucket to the correct owner $O(n)$
- Local sorting (using radix sort): $O(n/p)$

Worst case behavior

- The assignment of keys to threads is based solely on the knowledge of K_{max}
- If the keys are integers in the range $[0, Q-1]$ …
 … thread k has keys in the range

 \[\left[k \frac{Q}{P},(k+1) \frac{Q}{P} \right] \]

- E.g. for $Q=2^{30}$, $P=64$, each thread gets $2^{24} = 16$ M elements
- For a non-uniform distribution, we need more information to balance keys (and communication) over the processors
- In the worst case, all the keys could go to one processor
Improving on bucket sort

• Sample sort
• Uses a heuristic to estimate the distribution of the global key range over the p threads
• Each processor gets about the same number of keys
• Sample the keys to determine a set of p-1 splitters that partition the key space into p disjoint regions (buckets)
Sample selection

Initial element distribution

Local sort & sample selection

Sample combining

Global splitter selection

Final element assignment

Splitter selection: regular sampling

- Shi and Schaeffer [1992]
- Each processor sorts its local keys, then selects s evenly spaced samples
- These candidate splitters are collected by one thread
 - Sorted
 - Sampled at uniform positions to generate a $p-1$ element splitter list
Performance

- Assuming $n \geq p^3$ …
- $T_p = O((n/p) \ lg n)$
- If $s = p$, each processor will merge not more than $2n/p + n/s - p$ elements
- If $s > p$, each processor will merge not more than $(3/2)(n/p) - (n/(ps)) + 1 + d$ elements
- Duplicates d do not impact performance unless $d = O(n/p)$
- Tradeoff: increasing s …
 - Spreads the final distribution more evenly over the processors
 - Increases the cost of determining the splitters
- For some inputs, communication patterns can be highly irregular with some pairs of processors communicating more heavily than others, lowering performance
Radix sort

- We need a **stable** sorting algorithm to do the local sorts: the output preserves the order of inputs having the same associated key.

- **radix sort** meets our needs: sort the keys in passes, choosing an r-bit block at a time, O(n) running time.

- Explanation with a demo

A simple example

• Following an example in the NIST *Dictionary of Algorithms and Data Structures* http://www.nist.gov/dads/

• Uses buckets to sort the keys in passes

• Running time is $O(cn)$, c depends on size of the keys and the number of buckets
Radix sort in action

• Consider the input keys
 34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
• Use 4 buckets
• Sort on each digit in succession, least significant to most significant
Radix sort in action

• Consider the input keys
 34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
• Use 4 buckets
• Sort on each digit in succession, least significant to most significant
• After pass 1
 41 11 12 42 32 32 23 34 44 34
Radix sort in action

• Consider the input keys
 34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
• Use 4 buckets
• Sort on each digit in succession, least significant to most significant
• After pass 1
 41 11 12 42 32 32 23 34 44 34
• After pass 2
 11 12 23 32 32 34 34 41 42 44
Today’s Lecture

• Parallel Sorting (II)
 ‣ Bucket Sort
 ‣ Sample sort
 ‣ Bitonic Sort
Bitonic sort

• Classic parallel sorting algorithm: $O(\log^2 n)$ on n processors
• Also used in fast sorting on a GPU

• **Definition:** A *bitonic sequence* is a sequence of numbers $a_0, a_1...a_{n-1}$ with at most 1 local maximum and 1 local minimum (Endpoints wrap around)

 ‣ There exists an index i where

 $a_0 \leq a_1 \leq a_1 ... \leq a_i \text{ and } a_i \geq a_{i+1} \geq a_{i+1} ... \geq a_{n-1}$

 ‣ We may cyclically shift the a_k while maintaining this relationship

• Merge property: We may merge two bitonic sequences in much the same way as we merge two *monotonic* sequences

$$1,2,4,7,6,0 \quad \uparrow \quad \downarrow \quad 7,6,0,1,2,4$$
Splitting property of bitonic sequences

- We can split a bitonic sequence y into two bitonic sequences $L(y)$ and $R(y)$

\[
L(y) = \langle \min\{a_0, a_{n/2}\}, \min\{a_1, a_{n/2+1}\}, \ldots, \min\{a_{n/2+1}, a_{n-1}\} \rangle
\]

\[
R(y) = \langle \max\{a_0, a_{n/2}\}, \max\{a_1, a_{n/2+1}\}, \ldots, \max\{a_{n/2+1}, a_{n-1}\} \rangle
\]

- See the notes for a proof

All values in $L(y) < R(y)$

$L(y)$: 3 4 2 1

$R(y)$: 7 5 8 9
Sorting a bitonic sequence is easy

- Split the bitonic sequence \(y \) into two bitonic subsequences \(L(y) \) and \(R(y) \)
- Sort \(L(y) \) and \(R(y) \) recursively
- Merge the two sorted lists
 - Since all values in \(L(y) \) are smaller than all values in \(R(y) \) we don’t need to exchange values in \(L(y) \) and \(R(y) \)
- When \(|L(.)| < 3\), sorting is trivial
- We designate \(S(n) \) to be sort on of an \(n \)-element bitonic sequence
Bitonic sort algorithm

- Create a bitonic sequence y from an unsorted list
- Apply the previous algorithm to sort the bitonic sequence
- We need an algorithm to create the bitonic sequence y
Additional properties of bitonic sequences

- Any 2 element sequence is a bitonic sequence.
- We can trivially construct a bitonic sequence from two monotonic sequences, one sorted in increasing order, the other in decreasing order.

\[\downarrow + \uparrow = \nabla \]
Inductive construction of the initial bitonic sequence

- Form matched pairs of 2-element bitonic sequences, pointing up and down [B(2)]
- Trivially merge these into 4-element bitonic sequences
- Now form matched pairs of 4-element sequences [B(4)]
- Apply S(4) to each sequence, sorting the first upward, the second downward
- Trivially merge into an 8-element bitonic sequence
- Continue until there is just one sequence
Implementing the bitonic sort algorithm

• Create a bitonic sequence \(y \) from an unsorted list, \(B(n) \)
• Apply the previous algorithm to sort the bitonic sequence, \(S(n) \)
• We use comparators to re-order data
• We use a shuffle exchange network to form \(L(y) \) and \(R(y) \)
 ‣ This network shuffles an \(n \)-element sequence by interleaving \(x_0, x_{n/2}, x_1, x_{n/2+1}, \ldots \)
Comparators

- Given two values x & y, produce two outputs
 - For an increasing comparator, the output is $\min[x,y]$, $\max[x,y]$
 - For a decreasing comparator, the output is $\max[x,y]$, $\min[x,y]$

![Diagram](image_url)
Bitonic merging network

- Converts a bitonic sequence into a sorted sequence

From *Introduction to Parallel Computing*, V. Kumar et al, Benjamin Cummings, 1994
Bitonic conversion network

Converts an unordered sequence into a bitonic sequence

\[B(4) = S(4) + S(2) \]

From *Introduction to Parallel Computing*, V. Kumar et al, Benjamin Cummings, 2003
Fin