CSE 160
Lecture 9
Load balancing
Parallel Sorting
Announcements

• Quiz on Friday
• Signup for Friday labs sessions in APM
Today’s lecture

• Load balancing the N-body method with dynamic scheduling

• Parallel Sorting (I)

• In class exercises
 ‣ Some today, the rest on Wednesday
 ‣ At end of today’s slides
Particle simulation

• Two routines contain the work to be parallelized according to openmp #pragmas
• What’s not inside OMP parallel for should run serially
• Synchronization?

```c
void SimulateParticles()
{
    for( int step = 0; step < nsteps; step++ ) {
        apply_forces(particles,n);

        if (imbal)
            imbal_particles(particles,n);

        move_particles(particles,n);
        VelNorms(particles,n,uMax,vMax,uL2,vL2);
    }
}
```
Code for computing the force

- OpenMP parallelization of the outermost loop

```c
void apply_forces( particle_t* particles, int n) {
    #pragma omp parallel for shared(particles,n)
    for( int i = 0; i < n; i++ ) {
        particles[i].ax = particles[i].ay = 0;
        if ((particles[i].vx ≠ 0) || (particles[i].vx ≠ 0)) // for imbalanced
            for (int j = 0; j < n; j++ ){ // case
                if (i==j)
                    continue;
                particles[i].{ax,ay} += coef * {dx,dy};
            }
    }
}
```
Load Balancing

• The starter code has the –b option to shut off the force computation for the first \(n/4 \) particles

• A uniformly blocked workload assignment will result in a load imbalance
 ‣ Some processors finish later than other
 ‣ **Load balancing efficiency** \(\eta = T_1 / (P T_p) \)
 ‣ \(\eta < 1.0 \)

• 2 Alternatives
 ‣ Cyclic mapping (static used in A1)
 ‣ Dynamic scheduling
First approach: BLOCK CYCLIC

- Divide into pieces of size CHUNK
- Processor k gets chunks 0, NT*CHUNK, 2*NT*CHUNK, …
- Also called round robin or block cyclic

```c
#pragma omp parallel for shared(particles,n) 
 schedule(static, CHUNK)
for( int i = 0; i < n; i++ ) {
    particles[i].ax = particles[i].ay = 0;
    if ((particles[i].vx \neq 0) || (particles[i].vx \neq 0))
        for (int j = 0; j < n; j++ ){
            if (i==j)
                continue;
            particles[i].{ax,ay} += coef \ast \{dx,dy\};
        }
}
```
Second approach: dynamic scheduling

- Unlike CYCLIC decomposition, workload assignments are made on demand
- We subdivide workload into pieces of size CHUNK
- Also called *processor self scheduling*

```c
#pragma omp parallel for shared(particles,n) \
    schedule(dynamic, CHUNK)
for( int i = 0; i < n; i++ ) {
    particles[i].ax = particles[i].ay = 0;
    if ((particles[i].vx != 0) || (particles[i].vx != 0))
        for (int j = 0; j < n; j++ ){
            if (i==j)
                continue;
            particles[i].{ax,ay} += coef * {dx,dy};
        }
}
```
Tradeoffs in dynamic scheduling

- Dynamic workload assignments: processors schedule themselves
- Each thread samples a unique (and disjoint) set of indices, changes from run to run
- A shared counter or work queue represents the work
- User tunes work granularity (chunk size) trading off the overhead of workload assignment against increased load imbalance
 - Finest granularity: each point is a separate task
 - Coarsest granularity: one block per processor

Running time vs. Increasing Load imbalance

- Increasing granularity →

©2013 Scott B. Baden / CSE 160 / Winter 2013
How does self scheduling work?

SelfScheduler S(n, P, chunk);

while (S.getChunk(mymin, mymax))
 for i = mymin to mymax
 work(i, chunk);
 end for
end while
Implementation

- Critical section can be costly, but OMP atomic is restricted to simple update statements, e.g. `++ +=`
- C++ atomic<T> not guaranteed to be lock free, but probably more efficient
- Useful member functions in atomic::

```cpp
boolean getChunk(int& mymin, int& mymax ){
    // Inefficient
    #pragma omp critical
    {
        k = _counter;
        _counter += _chunk;
    }
    if (_counter > (_n - _chunk))
        return false;
    mymin = k, mymax = k + _chunk;
    return true;
}
```
OpenMP is also an API

```c
#ifndef _OPENMP
#include <omp.h>

int nthreads = 1;
#pragma omp parallel
{  
  int tid = omp_get_thread_num();
  if (tid == 0) {
    nthreads = omp_get_num_threads();
    printf("Number of openMP threads: %d\n", nthreads);
  }
}
#endif
```
Today’s lecture

• Load balancing the N-body method with dynamic scheduling

• Parallel Sorting (I)
Parallel Sorting

• Sorting is fundamental algorithm in data processing
 ‣ Given an unordered set of keys $x_0, x_1, \ldots, x_{N-1}$
 ‣ Return the keys in sorted order

• The keys may be character strings, floating point numbers, integers, or any object for which the relations $>$, $<$, and $==$ hold

• We’ll assume integers here
Compare and exchange sorts

- Simplest sort, based on the bubble sort algorithm
- The fundamental operation is compare-exchange
- Compare-exchange(a[j], a[j+1])
 - swaps its arguments if they are in decreasing order
 - satisfies the post-condition that $a[j] \leq a[j+1]$
 - returns FALSE if a swap was made

```plaintext
for i = N-1 to 1 by -1 do
  done = TRUE;
  for j = 0 to i-1 do // Compare-exchange(a[j], a[j+1])
    if (a[i] < a[j]) { a[i] ↔ a[j];
      done=FALSE; }
  end do
  if (done) break;
end do
```
Loop carried dependencies

- We cannot parallelize bubble sort owing to the *loop carried dependence* in the inner loop.
- The value of \(a[j] \) computed in iteration \(j \) depends on the \(a[i] \) computed in iterations \(0, 1, \ldots, j-1 \).

```c
#pragma omp parallel for shared(N, a)
for i = N-1 to 1 by -1 do
    done = TRUE;
    for j = 0 to i-1 do
        done = Compare-exchange(a[j] , a[j+1])
    end do
    if (done) break;
end do
```

©2013 Scott B. Baden / CSE 160 / Winter 2013
Dealing with loop carried dependences

• OpenMP will dutifully parallelize a loop when you tell it to, even if doing so “breaks” the code (incorrect results)

```c
int* fib = new int[N];
  fib[0] = fib[1] = 1;
#pragma omp parallel for shared(N, fib)
  for (i=2; i<N; i++)
    fib[i] = fib[i-1]+ fib[i-2];
```

• Sometimes we can restructure an algorithm, as in odd/even sorting
Odd/Even sort

• If we re-order the comparisons we can parallelize the algorithm
 ‣ number the points as even and odd
 ‣ alternate between sorting the odd and even points
• This algorithm parallelizes since there are no loop carried dependences
• All the odd (even) points are decoupled

\[a_{i-1} \quad a_i \quad a_{i+1} \]
The algorithm

done = false;

for i = 0 to n−1 do
 #pragma omp parallel for shared(n, a)
 for j = 0 to n−1 by 2 do // Even
 done &= Compare-exchange(a[j] , a[j+1]);
 end do
 #pragma omp parallel for shared(n, a)
 for j = 1 to n−1 by 2 do // Odd
 done &= Compare-exchange(a[j] , a[j+1]);
 end do
 if (done) break;
end do
Odd/Even Sort Code

int OE = lo % 2;
for (s = 0; s < n ; s++) {
 int done = Sweep(Keys, OE, lo, hi); /* Odd phase */
 done &= Sweep(Keys, 1-OE, lo, hi); /* Even phase */

 if (done){
 s++;
 break;
 }
}

} /* End For */
Reductions in OpenMP

- OpenMP uses a local accumulator, which it then accumulates globally after the loop finishes
  ```
  #pragma omp parallel reduction(+:sum)
  for (int i=0; i< N-1; i++)
      sum += x[i];
  ```

- Equivalent threads code
  ```
  i0 = $TID*n/$NT, i1 = i0 + n/$NT;
  for (i=i0, localSum=0; i < i1; i++)
      localSum += x[i];
  All threads accumulate localSum into Global Sum
  ```
Using the reduction clause

• More efficient than using a critical section
• In C++, we use <atomic>

```c
int    Sweep(int *Keys, int OE, int lo, int hi){
    int done = 1;
    #pragma omp parallel for shared(done,Keys) private(l,lo,hi) \ 
        reduction(*:done)
    for (int i = OE+lo; i <= Hi; i+=2) {
        if (Keys[i] > Keys[i+1]){
            Keys[i] ↔ Keys[i+1];
            done *= 0;
        }
    }
    return done;
}
```
In class exercises
Questions

1. Iteration to thread mapping
2. Removing data dependencies
3. Dependence analysis
4. Time constrained scaling
5. Tree Summation
6. Performance
1. Iteration to thread mapping

```c
#pragma omp parallel shared(N, iters) private(i)
#pragma omp for
for (i = 0; i < N; i++)
    iters[i] = omp_get_thread_num();
```

N = 9, # of openMP threads = 3
0 0 0 1 1 1 2 2 2

N = 16, # of openMP threads = 4, schedule(static,2)
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

N = 9: 0 0 1 1 2 2 0 0 1

N = 16, # of openMP threads = 4, schedule(dynamic,2)
3 3 0 0 1 1 2 2 3 3 3 3 3 3 3 3
2 2 3 3 0 0 1 1 2 2 2 2 2 2 2 2
2. Removing data dependencies

- B initially: 0 1 2 3 4 5 6 7
- B on 1 thread: 7 7 7 7 11 12 13 14
- How can we split into 2 loops so that each loop parallelizes, the result it correct?

```c
#pragma omp for shared (N,B)
for i = 0 to N-1
    B[i] += B[N-1-i];
B[7] += B[0]
```
Splitting a loop

• For iterations \(i = \frac{N}{2} + 1\) to \(N\), \(B[N-i]\) reference newly computed data
• All others reference “old” data
• \(B\) initially: \(0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\)
• Correct result: \(7\ 7\ 7\ 7\ 11\ 12\ 13\ 14\)

\[
\text{for } i = 0 \text{ to } N-1 \\
B[i] += B[N-i];
\]

\[
\text{for } i = \frac{N}{2} + 1 \text{ to } N-1 \\
B[i] += B[N-1-i];
\]

\[
\text{for } i = 0 \text{ to } N/2-1 \\
B[i] += B[N-1-i];
\]

In $PUB/Examples/OpenMP/Assign$
Compile with omp=1 on “make” line
3. Loop Dependence Analysis

• Which loop(s) can we correctly parallelize with OpenMP?

1. for $i = 1$ to $N-1$
 \[A[i] = A[i] + B[i-1]; \]

2. for $i = 0$ to $N-2$
 \[A[i+1] = A[i] + 1; \]

3. for $i = 0$ to $N-1$ step 2

4. for $i = 0$ to $N-2$
 \[
 \begin{align*}
 A[i] &= B[i]; \\
 C[i] &= A[i] + B[i]; \\
 E[i] &= C[i+1];
 \end{align*}
 \]
4. Time constrained scaling

- Sum N numbers on P processors
- Let N >> P
- Determine the largest problem that can be solved in time $T=10^4$ time units on 512 processors
- Let time to perform one addition = 1 time unit
- Let $\beta =$ time to add a value inside a critical section
Performance model

- Local additions: \(N/P - 1 \)
- Reduction: \(\beta \ (\lg P) \)
- Since \(N \gg P \)
 \[T(N,P) \sim \left(\frac{N}{P} \right) + \beta \ (\lg P) \]
- Determine the largest problem that can be solved in time \(T = 10^4 \) time units on \(P=512 \) processors, \(\beta = 1000 \) time units
- Constraint: \(T(512,N) \leq 10^4 \)
 \[\Rightarrow \left(\frac{N}{512} \right) + 1000 \ (\lg 512) \]
 \[= \left(\frac{N}{512} \right) + 1000 \times 9 \leq 10^4 \]
 \[\Rightarrow \ N \leq 5 \times 10^5 \ (\text{approximately}) \]
5. Tree Summation

- Input: an array \(x[] \), length \(N \gg P \)
- Output: Sum of the elements of \(x[] \)
- Goal: Compute the sum in \(\lg P \) time

\[
\text{sum} = 0;
\text{for } i=0 \text{ to } N-1
\quad \text{sum} += x[i]
\]

- Assume \(P \) is a power of 2, \(K = \lg P \)
- Starter code

\[
\text{for } m = 0 \text{ to } K-1 \{ \\
\}
\]
Visualizing the Summation

Thread 0 Thread 2 Thread 4 Thread 6

0 1 2 3 4 5 6 7

0+1 2+3 4+5 6+7

0...3 4..7

0..7
6. Performance

- You observe the following running times for a parallel program running a fixed workload N
- Assume that the only losses are due to serial sections
- What is the speedup and efficiency on 8 processors?
- What will the running time be on 4 processors?
- What is the maximum possible speedup on an infinite number of processors?
- What fraction of the total running time on 1 processor corresponds to the serial section?
- What fraction of the total running time on 2 processors corresponds to the serial section?

<table>
<thead>
<tr>
<th>NT</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>2</td>
<td>6000</td>
</tr>
<tr>
<td>8</td>
<td>3000</td>
</tr>
</tbody>
</table>