CSE 141L Lab #3: 9-bit single-cycle CPU
due Tuesday, February 19

In this assignment, you will finally design a single-cycle implementation of a processor to execute your 9-bit ISA. At a minimum, your design will have a program counter (PC), some next-PC logic, an ALU, memory, and some internal storage (e.g., register file). The ALU, internal storage should not be significantly changed from the last lab. The CPU design will execute the programs you wrote (hopefully correctly) for Lab 1.

Some things to keep in mind for this lab:
• Isolate control, if you can. Follow the text's lead by generating all control signals in one place from the opcode. This should make the design easier conceptually, at least.
• You will create a ROM to hold instruction memory and a RAM to hold data memory. Both will be initialized – the ROM(s) to hold your programs, the RAM to hold your input data.
• You can actually have three ROMS for your three programs, and swap them in and out of your design as needed. Otherwise, you could have a single ROM with three different initial values for the PC.
• I want you to have an init signal that sets the PC to some predetermined value. I also want a done signal that goes high at the halt instruction.
• I want you to have a cycle counter that we will use to reliably determine dynamic instruction counts. It should initialize to 0 at the init signal, and count up until the done signal goes high.
• Keep in mind that you may have to debug your programs! Think about how to make your life easier before it happens.
• In the questions for the lab report, I am no longer looking for you to convince me that your design is wonderful (unless it is), but rather I am looking at how effectively you critique your own design.
• Remember that it is your responsibility to convince us that your CPU works, not our responsibility to figure that out ourselves. Providing sufficient and clear results and information is crucial.
• In the design of each component of your design, keep in mind that you would like to reuse that component, as much as possible, in your pipelined design. You can save yourself a lot of trouble in the next lab if you do this right.
• We will not be collecting cycle time (clock rate) values in this lab, but we will in the next one (Lab 4).

What you turn in:
• A review of your ISA.
• Schematics or verilog code for all circuits (including those presented in lab 2), hierarchically organized. The highest-level design needs to have all of the signals necessary to demonstrate correct program execution via the timing diagram.
• A timing diagram for each program demonstrating correct operation and other important data. It should at a minimum show results being generated (e.g., the multiply result accumulating, the count of ones-dominated bytes accumulating …), the cycle counter, the PC. It need not show the whole execution of the program (particularly if it takes over 100 cycles or so!), but certainly the beginning and end and some execution of the main loop. It, once again, should be heavily annotated so we can figure out what is going on.
• The assembly and machine code for your three programs.
• Answers to the following questions:
1. Have you made any changes to your ISA from lab 1? What were they? Why did you make them? [Keep in mind you need approval to do so]
2. What are your dynamic instruction counts for program 1? program 2? program 3?
3. What could you have done differently to better optimize for dynamic instruction count?
4. How successful were you at optimizing for ease of design? Give examples.
5. What could you have done differently to better optimize for ease of design?
6. How easy/difficult would it be to extend your design to a multicycle implementation? Give examples.
7. What do you expect to be the biggest challenge in creating a pipelined design? Please give an answer that is specific to your ISA.
8. What might you have done differently if a priority was ease of programming? Give examples.
9. What instruction takes longest on your machine (and thus would set the cycle time)? (Use rough estimates).
10. What might you have done differently if a priority was short cycle time? (again, use rough estimates). Give examples.

**The inputs**
You will use the same input for all three programs. I will give you the RAM code with the input values initialized, and post it on Piazza.