Divide & Conquer Algorithms
Outline

- MergeSort
- Finding the middle point in the alignment matrix in linear space
- Linear space sequence alignment
- Block Alignment
- Four-Russians speedup
- Constructing LCS in sub-quadratic time
Divide and Conquer Algorithms

- **Divide** problem into sub-problems
- **Conquer** by solving sub-problems recursively. If the sub-problems are small enough, solve them in brute force fashion
- **Combine** the solutions of sub-problems into a solution of the original problem (tricky part)
Sorting Problem Revisited

• Given: an unsorted array

 5 2 4 7 1 3 2 6

• Goal: sort it

 1 2 2 3 4 5 6 7
Mergesort: Divide Step

Step 1 – Divide

\[
\begin{array}{cccccc}
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
\end{array}
\]

\[\log(n)\] divisions to split an array of size \(n\) into single elements
Mergesort: Conquer Step

Step 2 – Conquer

\[\begin{array}{cccccccc}
5 & 2 & 4 & 7 & 1 & 3 & 2 & 6 \\
2 & 5 & 4 & 7 & 1 & 3 & 2 & 6 \\
2 & 4 & 5 & 7 & 1 & 2 & 3 & 6 \\
1 & 2 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array} \]

\[O(n) \]

\[O(n) \]

\[O(n) \]

\[O(n) \]

\(\log(n) \) iterations, each iteration takes \(O(n) \) time. **Total Time:** \(O(n \log n) \)
Mergesort: Combine Step

Step 3 – Combine

- 2 arrays of size 1 can be easily merged to form a sorted array of size 2
- 2 sorted arrays of size \(n \) and \(m \) can be merged in \(O(n+m) \) time to form a sorted array of size \(n+m \)
Mergesort: Combine Step

Combining 2 arrays of size 4

Etcetera…
Merge Algorithm

1. **Merge**(a, b)
2. $n1 \leftarrow$ size of array a
3. $n2 \leftarrow$ size of array b
4. $a_{n1+1} \leftarrow \infty$
5. $a_{n2+1} \leftarrow \infty$
6. $i \leftarrow 1$
7. $j \leftarrow 1$
8. for $k \leftarrow 1$ to $n1 + n2$
9. if $a_i < b_j$
10. $c_k \leftarrow a_i$
11. $i \leftarrow i + 1$
12. else
13. $c_k \leftarrow b_j$
14. $j \leftarrow j + 1$
15. return c
Mergesort: Example

Divide

Conquer
MergeSort Algorithm

1. \textbf{MergeSort}(c)
2. \(n \leftarrow \text{size of array } c \)
3. \textbf{if } n = 1
4. \textbf{return } c
5. \textbf{left} \leftarrow \text{list of first } n/2 \text{ elements of } c
6. \textbf{right} \leftarrow \text{list of last } n-\frac{n}{2} \text{ elements of } c
7. \textbf{sortedLeft} \leftarrow \text{MergeSort(left)}
8. \textbf{sortedRight} \leftarrow \text{MergeSort(right)}
9. \textbf{sortedList} \leftarrow \text{Merge(sortedLeft, sortedRight)}
10. \textbf{return } sortedList
MergeSort: Running Time

- The problem is simplified to baby steps
 - for the ith merging iteration, the complexity of the problem is $O(n)$
- number of iterations is $O(\log n)$
- running time: $O(n \log n)$
Divide and Conquer Approach to LCS

Path*(source, sink)*

- if*(source & sink* are in consecutive columns)*
 - output the longest path from *source* to *sink*
- else
 - *middle* ← middle vertex between *source* & *sink*
 - **Path**(source, middle)
 - **Path**(middle, sink)
Divide and Conquer Approach to LCS

$$\text{Path}(source, sink)$$

- if ($source$ & $sink$ are in consecutive columns)
- output the longest path from $source$ to $sink$
- else
- $middle \leftarrow$ middle vertex between $source$ & $sink$
- $\text{Path}(source, middle)$
- $\text{Path}(middle, sink)$

The only problem left is how to find this “middle vertex”!
Computing Alignment Score Requires Linear Memory

Alignment Score

• Space complexity of computing the alignment score is just $O(n)$

• We only need the previous column to calculate the current column, and we can then throw away that previous column once we’re done using it
Computing Alignment Score: Recycling Columns

Only two columns of scores are saved at any given time

memory for column 1 is re-used to calculate column 3

memory for column 2 is re-used to calculate column 4
Computing Alignment Path Requires Quadratic Memory

Alignment Path

• Space complexity for computing an alignment path for sequences of length n and m is $O(nm)$

• We need to keep all backtracking references in memory to reconstruct the path (backtracking)
We want to calculate the longest path from (0,0) to (n,m) that passes through (i,m/2) where i ranges from 0 to n and represents the i-th row.

Define

\[\text{length}(i) \]

as the length of the longest path from (0,0) to (n,m) that passes through vertex \((i, m/2)\).
We want to calculate the longest path from (0,0) to (n,m) that passes through (i,m/2) where i ranges from 0 to n and represents the i-th row.

Define

$$\text{length}(i)$$

as the length of the longest path from (0,0) to (n,m) that passes through vertex (i, m/2).
Define \((mid, m/2)\) as the vertex where the longest path crosses the middle column.

\[
\text{length}(\text{mid}) = \text{optimal length} = \max_{0 \leq i \leq n} \text{length}(i)
\]
Define \((mid, m/2)\) as the vertex where the longest path crosses the middle column.

\[
\text{length}(mid) = \text{optimal length} = \max_{0 \leq i \leq n} \text{prefix}(i) + \text{suffix}(i)
\]
Computing \(\text{prefix}(i) \)

- \(\text{prefix}(i) \) is the length of the longest path from \((0,0)\) to \((i,m/2)\)
- Compute \(\text{prefix}(i) \) by dynamic programming in the left half of the matrix

\[
\begin{array}{ccc}
0 & m/2 & m \\
\end{array}
\]
Computing $\text{suffix}(i)$

- $\text{suffix}(i)$ is the length of the longest path from $(i,m/2)$ to (n,m)
- $\text{suffix}(i)$ is the length of the longest path from (n,m) to $(i,m/2)$ with all edges reversed
- Compute $\text{suffix}(i)$ by dynamic programming in the right half of the “reversed” matrix

![Diagram of a matrix with arrows and numbers indicating the computation of $\text{suffix}(i)$ column.](image)
\[\text{length}(i) = \text{prefix}(i) + \text{suffix}(i) \]

- Add \(\text{prefix}(i) \) and \(\text{suffix}(i) \) to compute \(\text{length}(i) \):
 \(\text{length}(i) = \text{prefix}(i) + \text{suffix}(i) \)
- You now have a middle vertex of the maximum path \((i, m/2)\) as maximum of \(\text{length}(i) \)
Finding the Middle Point

0 m/4 m/2 3m/4 m
Finding the Middle Point again

0 m/4 m/2 3m/4 m
And again…

```
|   0  |   m/8 |   m/4 |  3m/8 |   m/2 |  5m/8 |  3m/4 |  7m/8 |   m |
```

- Path through the grid with marked points.
Time = Area: First Pass

- On first pass, the algorithm covers the entire area

\[
\text{Area} = n \cdot m
\]
Time = Area: First Pass

- On first pass, the algorithm covers the entire area

\[\text{Area} = n \times m \]
Time = Area: Second Pass

- On second pass, the algorithm covers only 1/2 of the area

\[\text{Area} / 2 \]
Time = Area: Third Pass

- On third pass, only 1/4th is covered.
Geometric Reduction At Each Iteration

\[1 + \frac{1}{2} + \frac{1}{4} + \ldots + (\frac{1}{2})^k \leq 2 \]

- Runtime: \(O(\text{Area}) = O(nm) \)
Is It Possible to Align Sequences in Subquadratic Time?

- Dynamic Programming takes $O(n^2)$ for global alignment
- Can we do better?
- Yes, use *Four-Russians Speedup*
Partitioning Sequences into Blocks

- Partition the $n \times n$ grid into blocks of size $t \times t$
- We are comparing two sequences, each of size n, and each sequence is sectioned off into chunks, each of length t
- Sequence $u = u_1\ldots u_n$ becomes
 $$|u_1\ldots u_t| \quad |u_{t+1}\ldots u_{2t}| \quad \ldots \quad |u_{n-t+1}\ldots u_n|$$
 and sequence $v = v_1\ldots v_n$ becomes
 $$|v_1\ldots v_t| \quad |v_{t+1}\ldots v_{2t}| \quad \ldots \quad |v_{n-t+1}\ldots v_n|$$
Partitioning Alignment Grid into Blocks

\[
\begin{align*}
&n \\
\end{align*}
\]

\[
\begin{align*}
&n/t \\
\end{align*}
\]
Block Alignment

- **Block alignment** of sequences u and v:
 1. An entire block in u is aligned with an entire block in v
 2. An entire block is inserted
 3. An entire block is deleted

- **Block path**: a path that traverses every $t \times t$ square through its corners
Block Alignment: Examples

valid

invalid
Block Alignment Problem

- **Goal**: Find the longest block path through an edit graph
- **Input**: Two sequences, u and v partitioned into blocks of size t. This is equivalent to an $n \times n$ edit graph partitioned into $t \times t$ subgrids
- **Output**: The block alignment of u and v with the maximum score (longest block path through the edit graph)
Constructing Alignments within Blocks

- To solve: compute alignment score $\beta_{i,j}$ for each pair of blocks $|u_{(i-1)t+1 \ldots i*t}|$ and $|v_{(j-1)t+1 \ldots j*t}|$
- How many blocks are there per sequence? (n/t) blocks of size t
- How many pairs of blocks for aligning the two sequences? $(n/t) \times (n/t)$
- For each block pair, solve a mini-alignment problem of size $t \times t$
Constructing Alignments within Blocks

Block pair represented by each small square

Solve mini-alignment problems
Block Alignment: Dynamic Programming

Let $s_{i,j}$ denote the optimal block alignment score between the first i blocks of u and first j blocks of v

$$s_{i,j} = \max \begin{cases}
 s_{i-1,j} - \sigma_{\text{block}} \\
 s_{i,j-1} - \sigma_{\text{block}} \\
 s_{i-1,j-1} - \beta_{i,j}
\end{cases}$$

σ_{block} is the penalty for inserting or deleting an entire block

$\beta_{i,j}$ is score of pair of blocks in row i and column j.
Block Alignment Runtime

• Indices i, j range from 0 to n/t

• Running time of algorithm is

$$O(\left\lceil \frac{n}{t} \right\rceil \times \left\lfloor \frac{n}{t} \right\rfloor) = O\left(\frac{n^2}{t^2} \right)$$

if we don’t count the time to compute each $\beta_{i,j}$
Block Alignment Runtime (cont’d)

• Computing all $\beta_{i,j}$ requires solving $(n/t)*(n/t)$ mini block alignments, each of size $(t^* t)$

• So computing all $\beta_{i,j}$ takes time

$$O([n/t]*[n/t]*t^* t) = O(n^2)$$

• This is the same as dynamic programming

• How do we speed this up?
Four Russians Technique

- Let $t = \log(n)$, where t is the block size, n is the sequence size.
- Instead of having $(n/t)^*(n/t)$ mini-alignments, construct $4^t \times 4^t$ mini-alignments for all pairs of strings of t nucleotides (huge size), and put in a lookup table.
- However, size of lookup table is not really that huge if t is small. Let $t = (\log n)/4$. Then $4^t \times 4^t = n$
Look-up Table for Four Russians Technique

Each sequence has t nucleotides:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>AAAAA</th>
<th>AAAAAC</th>
<th>AAAAAG</th>
<th>AAAAAT</th>
<th>AAAACA</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAAAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAAAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAACA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lookup table "Score"

Size is only n, instead of $(n/t)^*(n/t)$.
New Recurrence

- The new lookup table Score is indexed by a pair of t-nucleotide strings, so

\[s_{i,j} = \max \begin{cases}
 s_{i-1,j} - \sigma_{\text{block}} \\
 s_{i,j-1} - \sigma_{\text{block}} \\
 s_{i-1,j-1} - \text{Score}(i^{\text{th}} \text{ block of } v, j^{\text{th}} \text{ block of } u)
\end{cases} \]
Four Russians Speedup Runtime

- Since computing the lookup table \(\text{Score} \) of size \(n \) takes \(O(n) \) time, the running time is mainly limited by the \(\frac{n}{t} \) accesses to the lookup table.
- Each access takes \(O(\log n) \) time.
- Overall running time: \(O(\frac{n^2}{t^2} \log n) \)
- Since \(t = \log n \), substitute in:
- \(O(\frac{n^2}{\log n^2} \log n) \geq O(\frac{n^2}{\log n}) \)
So Far…

• We can divide up the grid into blocks and run dynamic programming only on the corners of these blocks.

• In order to speed up the mini-alignment calculations to under n^2, we create a lookup table of size n, which consists of all scores for all t-nucleotide pairs.

• Running time goes from quadratic, $O(n^2)$, to subquadratic: $O(n^2/\log n)$.
Four Russians Speedup for LCS

- Unlike the block partitioned graph, the LCS path does not have to pass through the vertices of the blocks.

block alignment

longest common subsequence
Block Alignment vs. LCS

- In block alignment, we only care about the corners of the blocks.
- In LCS, we care about all points on the edges of the blocks, because those are points that the path can traverse.
- Recall, each sequence is of length n, each block is of size t, so each sequence has (n/t) blocks.
Block Alignment vs. LCS: Points Of Interest

Block alignment has \((n/t)^2 = (n^2/t^2)\) points of interest.

LCS alignment has \(O(n^2/t)\) points of interest.
Traversing Blocks for LCS

• Given alignment scores $s_{i,*}$ in the first row and scores $s_{*,j}$ in the first column of a $t \times t$ mini square, compute alignment scores in the last row and column of the minisquare.

• To compute the last row and the last column score, we use these 4 variables:
 1. alignment scores $s_{i,*}$ in the first row
 2. alignment scores $s_{*,j}$ in the first column
 3. substring of sequence u in this block (4^t possibilities)
 4. substring of sequence v in this block (4^t possibilities)
Traversing Blocks for LCS (cont’d)

• If we used this to compute the grid, it would take quadratic, $O(n^2)$ time, but we want to do better.
Four Russians Speedup

- Build a lookup table for all possible values of the four variables:
 1. all possible scores for the first row \(s_{*,j} \)
 2. all possible scores for the first column \(s_{*,j} \)
 3. substring of sequence \(u \) in this block (\(4^t \) possibilities)
 4. substring of sequence \(v \) in this block (\(4^t \) possibilities)
- For each quadruple we store the value of the score for the last row and last column.
- This will be a huge table, but we can eliminate alignments scores that don’t make sense
Reducing Table Size

• Alignment scores in LCS are monotonically increasing, and adjacent elements can’t differ by more than 1
• Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not because 2 and 4 differ by more than 1 (and so do 5 and 8)
• Therefore, we only need to store quadruples whose scores are monotonically increasing and differ by at most 1
Efficient Encoding of Alignment Scores

• Instead of recording numbers that correspond to the index in the sequences u and v, we can use binary to encode the differences between the alignment scores.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original encoding</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Binary encoding</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Reducing Lookup Table Size

- 2^t possible scores ($t = \text{size of blocks}$)
- 4^t possible strings
 - Lookup table size is $(2^t * 2^t) * (4^t * 4^t) = 2^{6t}$
- Let $t = (\log n)/4$;
 - Table size is: $2^{6((\log n)/4)} = n^{(6/4)} = n^{(3/2)}$
- Time = $O([n^2/t^2] \cdot \log n)$
- $O([n^2/(\log n)^2] \cdot \log n) \geq O(n^2/\log n)$
Summary

- We take advantage of the fact that for each block of $t = \log(n)$, we can pre-compute all possible scores and store them in a lookup table of size $n^{3/2}$.
- We used the Four Russian speedup to go from a quadratic running time for LCS to subquadratic running time: $O(n^2/\log n)$.