Lecture 3

Stencil methods
Multithreaded programming with OpenMP
Announcements

• Partners
• XSEDE accounts
• Trestles
• Gnuplot
Stencil Methods
Stencil methods

- Many physical problems are simulated on a uniform mesh in 1, 2 or 3 dimensions
- Field variables defined on a discrete set of points
- A mapping from ordered pairs to physical observables like temperature and pressure
- One application: differential equations
Differential equations

- A **differential equation** is a set of equations involving derivatives of a function (or functions), and specifies a solution to be determined under certain constraints.
- Constraints often specify **boundary conditions** or **initial values** that the solution must satisfy.
- When the functions have multiple variables we have a Partial Differential Equation (PDE)
 \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \] within a square box, \(x, y \in [0,1] \)
 \[u(x,y) = \sin(x) \times \sin(y) \] on \(\partial \Omega \), perimeter of the box
- When the functions have a single variable we have an **Ordinary Differential Equation** (ODE)
 \[-u''(x) = f(x), \ x \in [0,1], \ u(0) = a, \ u(1) = b \]
Solving an ODE with a discrete approximation

• Solve the ODE

 \[-u''(x) = f(x), \ x \in [0, 1]\]

• Define \(u_i = u(i \times h) \) at points

 \[x = i \times h, \quad h = 1/(N-1)\]

• Approximate the derivatives

 \[u'' \approx \frac{u(x+h) - 2u(x) + u(x-h)}{h^2}\]

• Obtain the system of equations

 \[
 \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} = f_i \quad i \in 1..n-2
 \]
Iterative solution

• Rewrite the system of equations
 \[-u_{i-1} + 2u_i - u_{i+1}/h^2 = f_i, \ i \in 1..n-1\]

• It can be shown that the following Gauss-Seidel algorithm will arrive at the solution …

• …. assuming an initial guess for the u_i

Repeat until the result is satisfactory
for $i = 1 : N-1$

\[
u_i = (u_{i+1} + u_{i-1} + h^2 f_i)/2
\]
end for
end Repeat
Convergence

- Convergence is slow
- We reach the desired precision in $O(N^2)$ iterations
Estimating the error

- How do we know when the answer is “good enough?”
 - The computed solution has reached a reasonable approximation to the exact solution
 - We validate the computed solution in the field, i.e. wet lab experimentation
- But we often don’t know the exact solution, and must estimate the error
Using the residual to estimate the error

- Recall the equations
 \[(-u_{i-1} + 2u_i - u_{i+1})/h^2 = f_i , \ i \in 1..n-1 \quad [Au = f] \]

- Define the \textit{residual} \(r_i \):
 \[r_i = (-u_{i-1} + 2u_i - u_{i+1})/h^2 - f_i , \ i \in 1..n-1 \]

- Thus, our computed solution is correct when
 \[r_i = 0 \]

- We can obtain a good estimate of the error by finding the maximum \(r_i \) \(\forall i \)

- Another possibility is to take the root mean square (L2 norm)
 \[\sqrt{\frac{\sum r_i^2}{n}} \]
Stencil operations in higher dimensions

- We call the numerical operator that sweeps over the solution array a **stencil operator**
- In 1D we have functions of one variable
- In n dimensions we have n variables
- In 2D:
 \[
 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \Delta u = f(x,y) \text{ within a square box, } x,y \in [0,1]
 \]
 \[
 u(x,y) = \sin(x) \times \sin(y) \text{ on } \partial \Omega, \text{ perimeter of the box}
 \]

 Define $u_{ij} = u(x_i, y_j)$ at points $x_i = i \times h, \quad y_j = j \times h, \quad h = 1/(N-1)$

- Approximate the derivatives
 \[
 u_{xx} \approx (u(x_{i+1},y_j) + u(x_{i-1},y_j) + u(x_i,y_{j+1}) + u(x_i,y_{j-1}) - 4u(x_i, y_j))/h^2
 \]
Jacobi’s Method in 2D

• The update formula

Until converged:
 for (i,j) in $0:N-1 \times 0:N-1$
 $$u'[i,j] = \frac{(u[i-1,j]+ u[i+1,j]+ u[i,j-1]+ u[i,j+1]-h^2f[i,j])}{4}$$
 $$u = u'$$
Roundoff

- You may notice slight variations in the residual in a parallel computation
- Machine arithmetic is finite
- Consider 4-digit decimal arithmetic
- Compute $10^4 - (10^4 - 1) = 1$
 - $10^4 - 1 = 1.000E4 - 1.000E0 = 9.999E3$
 - Normalize $1.000E0$ to $0.0001E4$
 - But with only 4 digits we truncate $0.0001E4$ to $0.000E4$
 - Result: 10^4
 - $10^4 - 10^4 = 0$, not 1; what if we had to divide?
- Machine arithmetic is neither associative nor commutative
Multicore programming
SPMD execution model

• Most parallel programming is implemented under the **Same Program Multiple Data** programming model = SPMD
 - Threads
 - Message passing
 - Other names: “loosely synchronous” or “bulk synchronous”

• Programs execute as a set of P processes or threads
 - We specify P when we run the program
 - Each process/thread is usually assigned to a different physical processor

• Each process or thread
 - is initialized with the same code
 - has an associated *index* or *rank*, a unique integer in the range 0:P-1
 - executes instructions at its own rate

• Processes communicate via messages, threads through shared memory
Shared memory programming with threads

• Program executes a collection of independent instruction streams, called **threads**

• Each thread
 ✦ is usually assigned to a distinct physical processor
 ✦ has a *thread index*, a unique integer in \([0:NT-1]\)

• A thread is similar to a procedure call with notable differences
 ✦ A new storage class: shared data
 ✦ A procedure call is “synchronous:”
 a return indicates completion
 ✦ A spawned thread executes asynchronously until it completes
 ✦ Both share global storage with caller
 ✦ Synchronization may be needed when updating shared state (thread safety)
Why threads?

- Processes are “heavy weight” objects scheduled by the OS
 - Protected address space, open files, and other state
- A thread AKA a lightweight process (LWP)
 - Threads share the address space and open files of the parent, but have their own stack
 - Reduced management overheads, e.g. thread creation
 - Kernel scheduler multiplexes threads
Multithreaded programming in practice

• One approach is to use program annotations via openMP
• A lower level interface is the POSIX Threads
 “standard” (pthreads): IEEE POSIX 1003.1c-1995
 ❖ Beware of non-standard features
• Another is Java threads, but not used in HPC
Programming model

• Start with a single root thread
• Fork-join parallelism to create concurrently executing threads
• Threads may or may not execute on different processors, and might be interleaved
• Scheduling behavior specified separately
OpenMP programming

• Simpler interface than explicit threads
• Parallelization handled via annotations
• See http://www.openmp.org
• Parallel loop:

```c
#pragma omp parallel private(i) shared(n)
{
#pragma omp for
for(i=0; i < n; i++)  
  work(i);
}

i0 = $TID*n/$nthreads;
i1 = i0 + n/$nthreads;
for (i=i0; i< i1; i++)
  work(i);
```
OpenMP Fork-Join Model

• A program begins life as a single thread
• Parallel regions to spawn work groups of multiple threads
• For-join can be logical; a clever compiler can use barriers instead
#pragma omp parallel // Begin a parallel construct
{
 // form a team
 // Each team member executes the same code
 #pragma omp sections // Begin work sharing
 {
 #pragma omp section // A unit of work
 {
 functionA(..);}

 #pragma omp section // Another unit
 {
 functionB(..);}
 } // Wait until both units complete

} // End of Parallel Construct; disband team
// continue serial execution
```c
printf("Start\n");
N = 1000;

#pragma omp parallel for
for (i=0; i<N; i++)
   A[i] = B[i] + C[i];

M = 500;

#pragma omp parallel for
for (j=0; j<M; j++)
   p[j] = q[j] - r[j];

printf("Finish\n");
```
Workload decomposition in OpenMP

- We use static assignment
- Dynamic assignment for irregular problems (later on)
- Translator automatically generates appropriate local loop bounds

```c
#pragma omp parallel private(i) shared(n)
{
    #pragma omp for
    for(i=0; i < n; i++)
        work(i);
}
```

```
0 1 2 3
```

```
0
1
2
3
```
Parallelizing a nested loop with OpenMP

• We parallelize the outer loop index
• Not all implementations can parallelize inner loops

```c
#pragma omp parallel private(i) shared(n)
#pragma omp for
for(i=0; i < n; i++)
    for(j=0; j < n; j++) {
        u_{\text{new}}[i,j] = (u[i-1,j] + u[i+1,j]+ u[i,j-1]+ u[i, j+1] - h^2 f[i,j])/4
    }
```

• We have an implicit barrier after each loop
• Generated code

```c
mymin = 1 + ($TID * n/nprocs),  mymax = mymin + n/nprocs -1
for(i=mymin; i < mymax; i++)
    for(j=0; j < n; j++) {
        u_{\text{new}}[i,j] = (u[i-1,j] + u[i+1,j]+ u[i,j-1]+ u[i, j+1] - h^2 f[i,j])/4
    }
```
OpenMP is also an API

```c
#ifndef _OPENMP
#include <omp.h>

int nthreads = 1;
#pragma omp parallel
{
    int tid = omp_get_thread_num();
    if (tid == 0) {
        nthreads = omp_get_num_threads();
        printf("Number of openMP threads: %d\n", nthreads);
    }
}
#endif
```
Reductions in OpenMP

- OpenMP uses a local accumulator, which it then accumulates globally after the loop finishes

```c
#pragma omp parallel reduction(+:sum)
    for (int i=0; i < N-1; i++)
        sum += x[i];
```

```c
i0 = $TID*n/$nthreads, i1 = i0 + n/$nthreads;
for (i=i0, localSum=0; i < i1; i++)
    localSum += x[i];
```

All threads accumulate localSum into Global Sum
Reduction - Computing the Residual

double c = 1 / 6.0, err=0;
#pragma omp parallel shared(U,B,c)
#pragma omp for reduction(:err)
for (int i=1; i<=nx; i++)
 for (int j=1; j<=ny; j++)
 for (int k=1; k<=nz; k++){
 double du = c * (U[i-1][j][k] + U[i+1][j][k] + U[i][j-1][k] +
 U[i][j+1][k] + U[i][j][k-1] + U[i][j][k+1] - 6.0*B[i-1][j-1][k-1]);
 double = B[i-1][j-1][k-1] - du;
 err = err + r*r;
 }
 double resid = sqrt(err)/(double)((nx+2)*(ny+2)*(nz+2));
Critical Sections

• Only one thread at a time may run the code in a critical section
• Uses mutual exclusion to implement critical sections

```c
#pragma omp parallel // Begin a parallel construct
{
    #pragma omp sections    // Begin worksharing
    { //
        #pragma omp critical // Critical section
        { x = x + 1 }
        #pragma omp critical // Another critical section
        { x = x + 1 }
        ... // More Replicated Code
        #pragma omp barrier // Wait for all members to arrive
            } // Wait until both units of work complete
    }
}
```
Multithreaded Solve()

Local mymin = 1 + ($TID * n/$nprocs),
 mymax = mymin + n/$nprocs -1;
Global resid, U[:, :], U^{new}[:, :]
Local done = FALSE;
while (!done) do
 Local myResid = 0;
 resid = 0;
 update U^{new} and myResid
 resid += myResid;
 if (resid < Tolerance) done = TRUE;
U[mymin:mymax, :] = $U^{new}[mymin:mymax, :]$;
end while

for i = mymin to mymax do
 for j = 1 to n do
 $U^{new}[i, j] = ...$
 myresid += ...
 end for
end for

Is this code correct?
Correctness

Local mymin = 1 + ($TID * n/$nprocs),
mymax = mymin + n/$nprocs - 1;

Global resid, U[:,:], U_{new}[:,:]

Local done = FALSE;

while (!done) do
 Local myResid = 0;
 BARRIER
 Only on thread 0: resid = 0;
 BARRIER
 update U_{new} and myResid
 CRITICAL SEC: resid += myResid
 BARRIER
 if (resid < Tolerance) done = TRUE;
 Only on thread 0: $U[mymin:mymax,:] = U_{new}[mymin:mymax,:];$
end while

Does this code use minimal synchronization?

for i = mymin to mymax do
 for j = 1 to n do
 $U_{new}[i,j] = ...$
 myresid += ...
 end for
end for
Dealing with Data Dependences
Loop carried dependences

• OpenMP will dutifully parallelize a loop when you tell it to, even if doing so “breaks” the correctness of the code

```c
int* fib = new int[N];
fib[0] = fib[1] = 1;
#pragma omp parallel for num_threads(2)
for (i=2; i<N; i++)
    fib[i] = fib[i-1]+ fib[i-2];
```

• Sometimes we can restructure an algorithm, as in odd/even sorting
Parallel Sorting

• Sorting is fundamental algorithm in data processing
 ✷ Given an unordered set of keys $x_0, x_1, \ldots, x_{N-1}$
 ✷ Return the keys in sorted order
• The keys may be character strings, floating point numbers, integers, or any object for which the relations $>$, $<$, and $==$ hold
• We’ll assume integers here
• Will talk about other algorithms later on
Compare and exchange sorts

- Simplest sort, based on the bubble sort algorithm
- The fundamental operation is compare-exchange
- \textbf{Compare-exchange}(a[j], a[j+1])
 - swaps its arguments if they are in decreasing order
 - satisfies the post-condition that $a[j] \leq a[j+1]$
 - Returns FALSE if a swap was made

```cpp
for i = N-1 to 1 by -1 do
    done = TRUE;
    for j = 0 to i-1 do // Compare-exchange(a[j], a[j+1])
        if (a[i] < a[j]) { a[i] ↔ a[j];
            done = FALSE; }
    end do
    if (done) break;
end do
```
Loop carried dependencies

- We cannot parallelize bubble sort owing to the \textit{loop carried dependence} in the inner loop.
- The value of $a[j]$ computed in iteration j depends on the $a[i]$ computed in iterations 0, 1, ..., $j-1$.

```c
for i = N-1 to 1 by -1 do
    done = TRUE;
    for j = 0 to i-1 do
        done = Compare-exchange(a[j] , a[j+1])
    end do
    if (done) break;
end do
```
Odd/Even sort

• If we re-order the comparisons we can parallelize the algorithm
 ♦ number the points as even and odd
 ♦ alternate between sorting the odd and even points
• This algorithm parallelizes since there are no loop carried dependences
• All the odd (even) points are decoupled

\[a_{i-1} \quad a_i \quad a_{i+1} \]
The algorithm

done = false;

for i = 0 to n-1 do

 for j = 0 to n-1 by 2 do // Even
 done &= Compare-exchange(a[j], a[j+1]);
 end do

 for j = 1 to n-1 by 2 do // Odd
 done &= Compare-exchange(a[j], a[j+1]);
 end do
 if (done) break;

end do
Odd/Even Sort Code

int OE = lo % 2;
for (s = 0; s < MaxIter; s++) {
 int done = Sweep(Keys, OE, lo, hi); /* Odd phase */
 done &= Sweep(Keys, 1-OE, lo, hi); /* Even phase */
 if (done) {
 s++;
 break;
 }
}

} /* End For */
Inside Sweep

```c
int Sweep(int *Keys, int OE, int lo, int hi)
{
    int done = 1;
    #pragma omp parallel for shared(done) private(i) reduction(*:done)
        for (int i = OE+lo; i <= Hi; i+=2) {
            if (Keys[i] > Keys[i+1]){
                Keys[i] ← Keys[i+1];
                done *= 0;
            }
        }
    return done;
}
```
Memory system behavior

- Off processor values surround each local subproblem
- Non-contiguous data
- Inefficient to access values on certain faces/edges; poor utilization of cache
- False sharing of boundary data
• A program begins life as a single “boss” thread
• When the boss encounters a parallel construct, it creates a team of worker threads
• The lexically enclosed program statements execute in parallel by all team members
• When we reach the end of the scope…
 • The team of threads synchronize and are dissolved; they enter a wait state
 • Only the master thread continues,
• Thread teams can be created and dissolved many times during program execution

www.ncsa.uiuc.edu/UserInfo/Resources/Software/Intel/Compilers/10.0/main_cls/mergedProjects/optaps_cls/whskin_homepage.htm
• A clever compiler can avoid so many thread creations and joins