Announcements

- HW 1 due in class on Tue Jan 24
- Email me your homework partner name, or if you need a partner *today*
Greedy Algorithms

- Direct argument - MST
- Exchange argument - Caching
- Greedy approximation algorithms
Optimal Caching

Given a sequence of memory accesses, limited cache: How do you decide which cache element to evict?

Note: We are given future memory accesses for this problem, which is usually not the case. This is for an application of greedy algorithms
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, how do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Goal: Minimize #main memory fetches

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, how do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future

Theorem: The FF algorithm minimizes \#fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future

Theorem: The FF algorithm minimizes #fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes #fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes \#fetches.
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes fetches.
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes #fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes number of fetches.
Optimal Caching

<table>
<thead>
<tr>
<th>M</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
</table>

Memory Access Sequence

<table>
<thead>
<tr>
<th>S₁</th>
<th>a</th>
<th>a</th>
<th>c</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Cache Contents

<table>
<thead>
<tr>
<th>E</th>
<th></th>
<th></th>
<th>a</th>
<th></th>
<th></th>
<th></th>
<th>c</th>
<th></th>
</tr>
</thead>
</table>

Evicted items

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes fetches.
Caching: Reduced Schedule

<table>
<thead>
<tr>
<th>M</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>c</td>
<td>-</td>
</tr>
</tbody>
</table>

An eviction schedule is **reduced** if it fetches an item x only when it is accessed.

Fact: For any S, there is a reduced schedule S^* which makes at most as many fetches as S.
Caching: Reduced Schedule

An eviction schedule is **reduced** if it fetches an item x only when it is accessed.

Fact: For any S, there is a reduced schedule S^* with at most as many fetches as S.

To convert S to S^*: Be lazy!
Optimal Caching Theorem

Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Suppose you claim a magic schedule schedule S_M makes less fetches than SFF Then, we can construct a sequence of schedules:
$S_M = S_0, S_1, S_2, \ldots, S_n = SFF$ such that:
(1) S_j agrees with SFF from $t=1$ to $t = j$
(2) $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

What does this say about $\#\text{fetches}(SFF)$ relative to $\#\text{fetches}(S_M)$?
Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

- S_j
- S_{j+1}
- SFF

![Diagram showing the comparison of schedules and cache](cache-diagram.png)

Cache $t=j$
Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes \textbf{same decision} as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Case 1:
No cache miss at $t=j+1$. $S_{j+1} = S_j$
Theorem: Suppose a reduced schedule \(S_j \) makes the same decisions as SFF from \(t=1 \) to \(t=j \). Then, there exists a reduced schedule \(S_{j+1} \) s.t:
1. \(S_{j+1} \) makes **same decision** as SFF from \(t=1 \) to \(t=j+1 \)
2. \(\#fetches(S_{j+1}) \leq \#fetches(S_j) \)

Case 2: Cache miss at \(t=j+1 \), \(S_j \) and SFF evict same item. \(S_{j+1} = S_j \)
Caching: FF Schedules

Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:

1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Case 3a: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to d, and S_j evicts b. Make S_{j+1} evict a, bring in d.
Theorem: Suppose a reduced schedule \(S_j \) makes the same decisions as SFF from \(t=1 \) to \(t=j \). Then, there exists a reduced schedule \(S_{j+1} \) s.t:
1. \(S_{j+1} \) makes **same decision** as SFF from \(t=1 \) to \(t=j+1 \)
2. \(\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j) \)

Case 3b: Cache miss at \(t=j+1 \). \(S_j \) evicts a, SFF evicts b. \(S_{j+1} \) also evicts b.

Next there is a request to a, and \(S_j \) evicts b. \(S_{j+1} \) does nothing.
Caching: FF Schedules

Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Case 3c: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to a, and S_j evicts d. S_{j+1} evicts d and brings in b. Now convert S_{j+1} to the reduced version of this schedule.
Caching: FF Schedules

Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:

1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Case 3d: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b.
Next there is a request to b. **Cannot happen** as a is accessed before b!
Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes same decision as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Case 1: No cache miss at $t=j+1$. $S_{j+1} = S_j$

Case 2: Cache miss at $t=j+1$, S_j and SFF evict same item. $S_{j+1} = S_j$

Case 3a: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to d, and S_j evicts b. Make S_{j+1} evict a, bring in d.

Case 3b: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to a, and S_j evicts b. S_{j+1} does nothing.

Case 3c: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to a, and S_j evicts d. S_{j+1} evicts d and brings in b. Now convert S_{j+1} to the reduced version of this schedule.

Case 3d: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to b. Cannot happen as a is accessed before b!
Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:

1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Suppose you claim a magic schedule schedule S_M makes less fetches than SFF. Then, we can construct a sequence of schedules:

$S_M = S_0, S_1, S_2, ..., S_n = SFF$ such that:

(1) S_j agrees with SFF from $t=1$ to $t = j$
(2) $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

What does this say about $\#\text{fetches}(SFF)$ relative to $\#\text{fetches}(S_M)$?
Greedy Algorithms

- Direct argument - MST
- Exchange argument - Caching
- Greedy approximation algorithms
Greedy Approximation Algorithms

- k-Center
- Set Cover
Approximation Algorithms

• Optimization problems, eg, MST, Shortest paths

• What do we optimize?

• What if we do not have enough resources to compute the optimal solution?
Approximation Algorithms

For an instance I of a **minimization problem**, let:

$$A(I) = \text{value of solution by algorithm } A$$

$$OPT(I) = \text{value of optimal solution}$$

Approximation ratio(A) = $\max_I A(I)/OPT(I)$

A is an **approx. algorithm** if approx-ratio(A) is bounded
Approximation Algorithms

For an instance \(I \) of a **minimization problem**, let:

\[
A(I) = \text{value of solution by algorithm } A
\]

\[
OPT(I) = \text{value of optimal solution}
\]

Approximation ratio(\(A \)) = \(\max_I A(I)/OPT(I) \)

\(A \) is an **approx. algorithm** if approx-ratio(\(A \)) is bounded

Higher approximation ratio means **worse** algorithm
Greedy Approximation Algorithms

- k-Center
- Set Cover
k-Center Problem

Given \textbf{n towns} on a map
Find how to place \textbf{k shopping malls} such that:
Drive to the nearest mall from any town is shortest
k-Center Problem

Given **n towns** on a map
Find how to place **k shopping malls** such that:
Drive to the nearest mall from any town is shortest

$k=3$
k-Center Problem

Given **n points** in a **metric space**
Find **k centers** such that distance between any point and its closest center is as small as possible

Metric Space:
Point set w/ distance fn \(d\)

Properties of \(d\):
- \(d(x, y) \geq 0\)
- \(d(x, y) = d(y, x)\)
- \(d(x, y) \leq d(x, z) + d(y, z)\)

NP Hard in general
A Greedy Algorithm: Farthest-first traversal

1. Pick $C = \{x\}$, for an arbitrary point x
2. Repeat until C has k centers:
 - Let y maximize $d(y, C)$, where $d(y, C) = \min_{x \in C} d(x, y)$
 - $C = C \cup \{y\}$

$k=3$
A Greedy Algorithm: Farthest-first traversal

1. Pick $C = \{x\}$, for an arbitrary point x
2. Repeat until C has k centers:

 Let y maximize $d(y, C)$, where

 $d(y, C) = \min_{x \in C} d(x, y)$

 $C = C \cup \{y\}$

$k=3$
A Greedy Algorithm: Farthest-first traversal

1. Pick $C = \{x\}$, for an arbitrary point x
2. Repeat until C has k centers:
 - Let y maximize $d(y, C)$, where
 \[d(y, C) = \min_{x \in C} d(x, y) \]
 - $C = C \cup \{y\}$
A Greedy Algorithm: Farthest-first traversal

1. Pick $C = \{x\}$, for an arbitrary point x
2. Repeat until C has k centers:
 - Let y maximize $d(y, C)$, where $d(y, C) = \min_{x \in C} d(x, y)$
 - $C = C \cup \{y\}$
A Greedy Algorithm: Farthest-first traversal

1. Pick $C = \{x\}$, for an arbitrary point x
2. Repeat until C has k centers:
 Let y maximize $d(y, C)$, where
 $$d(y, C) = \min_{x \in C} d(x, y)$$
 $$C = C \cup \{y\}$$

$k=3$
Farthest-first Traversal

Is farthest-first traversal always optimal?

Theorem: Approx. ratio of farthest-first traversal is 2
Facts on Analyzing Approx. Algorithms

- Need to reason about the algorithm relative to the optimal solution
- Example: Optimal solution has value greater than or equal to some value X
Farthest-first (FF) Traversal

Theorem: Approx. ratio of FF-traversal is 2
Define, for any instance: \(r = \max_x d(x, C) \)
\[q = \arg\max_x d(x, C) \]

Metric Space:
Point set w/ **distance fn** \(d \)

Properties of \(d \):
- \(d(x, y) \geq 0 \)
- \(d(x, y) = d(y, x) \)
- \(d(x, y) \leq d(x, z) + d(y, z) \)

For a set \(S \),
\[d(x, S) = \min_y \in S d(x, y) \]

FF-traversal:
Pick \(C = \{x\} \), arbitrary \(x \)
Repeat until \(C \) has \(k \) centers:
Let \(y \) **maximize** \(d(y, C) \)
\[C = C \cup \{y\} \]

Property 1. Solution value of FF-traversal = \(r \)
Farthest-first (FF) Traversal

Metric Space:
Point set w/ distance fn d

Properties of d:
\begin{itemize}
 \item $d(x, y) \geq 0$
 \item $d(x, y) = d(y, x)$
 \item $d(x, y) \leq d(x, z) + d(y, z)$
\end{itemize}

For a set S, $d(x, S) = \min_{y \in S} d(x, y)$

FF-traversal:
Pick $C = \{x\}$, arbitrary x
Repeat until C has k centers:
 Let y maximize $d(y, C)$
 $C = C \cup \{y\}$

Theorem: Approx. ratio of FF-traversal is 2
Define, for any instance: $r = \max_x d(x, C)$
$q = \arg\max_x d(x, C)$

Property 1. Solution value of FF-traversal = r

Property 2. There are at least $k+1$ points S s.t. each pair has distance $\geq r$
Theorem: Approx. ratio of FF-traversal is 2
Define, for any instance: \(r = \max_x d(x, C) \)
\(q = \arg\max_x d(x, C) \)

Property 1. Solution value of FF-traversal = \(r \)

Property 2. There are at least \(k+1 \) points \(S \) s.t each pair has distance \(\geq r \), where \(S = C \cup \{q\} \).
Farthest-first (FF) Traversal

Theorem: Approx. ratio of FF-traversal is 2
Define, for any instance: \(r = \max_x d(x, C) \)
\(q = \arg\max_x d(x, C) \)

Metric Space:
Point set w/ distance fn \(d \)

Properties of \(d \):
• \(d(x, y) \geq 0 \)
• \(d(x, y) = d(y, x) \)
• \(d(x, y) \leq d(x, z) + d(y, z) \)

For a set \(S \),
\(d(x, S) = \min_{y \in S} d(x, y) \)

FF-traversal:
Pick \(C = \{x\} \), arbitrary \(x \)
Repeat until \(C \) has \(k \) centers:
Let \(y \) \textbf{maximize} \(d(y, C) \)
\(C = C \cup \{y\} \)

Property 1. Solution value of FF-traversal = \(r \)
Property 2. There are at least \(k+1 \) points \(S \) s.t each pair has distance \(\geq r \), where \(S = C \cup \{q\} \).
Property 3. The Optimal solution must assign at least two points \(x, y \) in \(S \) to the same center \(c \)

What is \(\max(d(x, c), d(y, c)) \)?
Farthest-first (FF) Traversal

Metric Space:
Point set w/ distance fn \(d \)

Properties of \(d \):
- \(d(x, y) \geq 0 \)
- \(d(x, y) = d(y, x) \)
- \(d(x, y) \leq d(x, z) + d(y, z) \)

For a set \(S \),
\[
 d(x, S) = \min_{y \in S} d(x, y)
\]

FF-traversal:
Pick \(C = \{x\} \), arbitrary \(x \)
Repeat until \(C \) has \(k \) centers:
- Let \(y \) maximize \(d(y, C) \)
- \(C = C \cup \{y\} \)

Theorem: Approx. ratio of FF-traversal is 2
Define, for any instance:
\[
 r = \max_x d(x, C) \\
 q = \arg\max_x d(x, C)
\]

Property 3. The optimal solution must assign at least two points \(x, y \) in \(S \) to the same center \(c \)
What is \(\max(d(x, c), d(y, c)) \)?

From property of \(d \),
\[
 d(x, c) + d(y, c) \geq d(x, y) \\
 \max(d(x, c), d(y, c)) \geq d(x, y)/2
\]
Farthest-first (FF) Traversal

Metric Space:
Point set with distance function \(d\)

Properties of \(d\):
- \(d(x, y) \geq 0\)
- \(d(x, y) = d(y, x)\)
- \(d(x, y) \leq d(x, z) + d(y, z)\)

For a set \(S\),
- \(d(x, S) = \min_{y \in S} d(x, y)\)

FF-traversal:
Pick \(C = \{x\}\), arbitrary \(x\)
Repeat until \(C\) has \(k\) centers:
- Let \(y\) maximize \(d(y, C)\)
- \(C = C \cup \{y\}\)

Theorem: Approx. ratio of FF-traversal is 2
Define, for any instance: \(r = \max_x d(x, C)\)
\(q = \arg\max_x d(x, C)\)

Property 1. Solution value of FF-traversal = \(r\)

Property 2. There are at least \(k+1\) points \(S\) s.t.
each pair has distance \(\geq r\), where \(S = C \cup \{q\}\)

Property 3. The optimal solution must assign at least two points \(x, y\) in \(S\) to the same center \(c\)
- \(\max(d(x, c), d(y, c)) \geq d(x, y)/2 \geq r/2\)

Property 4. Thus, Opt. solution has value \(\geq r/2\)
Summary: k center

Given **n points** in a **metric space**
Find **k centers** such that distance between any point and its closest center is as small as possible

FF-Traversal Algorithm:
1. Pick $C = \{x\}$, for an arbitrary point x
2. Repeat until C has k centers:
 - Let y maximize $d(y, C)$, where
 $$d(y, C) = \min_{x \in C} d(x, y)$$
 - $C = C \cup \{y\}$

k-center is **NP hard**, but **approx. ratio** of FF-traversal is 2
Applications of k-center:

- Facility-location problems
- Clustering
Greedy Approximation Algorithms

- k-Center
- Set Cover
Set Cover Problem

Given:
- Universe U with n elements
- Collection C of sets of elements of U

Find the smallest subset C^* of C that covers all of U

NP Hard in general
Set Cover Problem

Given:
- Universe \(U \) with \(n \) elements
- Collection \(C \) of sets of elements of \(U \)

Find the smallest subset \(C^* \) of \(C \) that covers all of \(U \)

NP Hard in general
A Greedy Set-Cover Algorithm

\[
C^* = \{ \} \\
\text{Repeat until all of } U \text{ is covered:} \\
\quad \text{Pick the set } S \text{ in } C \text{ with highest # of uncovered elements} \\
\quad \text{Add } S \text{ to } C^*
\]
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]
Repeat until all of U is covered:
 Pick the set S in C with highest \# of uncovered elements
 Add S to C*
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]
Repeat until all of \(U \) is covered:
 - Pick the set \(S \) in \(C \) with highest \# of uncovered elements
 - Add \(S \) to \(C^* \)
A Greedy Set-Cover Algorithm

C* = {}
Repeat until all of U is covered:
 Pick the set S in C with highest # of uncovered elements
 Add S to C*
A Greedy Set-Cover Algorithm

C* = {}
Repeat until all of U is covered:
 Pick the set S in C with highest # of uncovered elements
 Add S to C*
A Greedy Set-Cover Algorithm

C* = { }
Repeat until all of U is covered:
 Pick the set S in C with highest # of uncovered elements
 Add S to C*
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]
Repeat until all of U is covered:
 Pick the set S in C with highest # of uncovered elements
 Add S to C*

\[C^* = \{ \} \]
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]
Repeat until all of \(U \) is covered:
 - Pick the set \(S \) in \(C \) with highest \# of uncovered elements
 - Add \(S \) to \(C^* \)

Greedy: \#sets=7
A Greedy Set-Cover Algorithm

$C^* = \{ \}$

Repeat until all of U is covered:

- Pick the set S in C with highest # of uncovered elements
- Add S to C^*

Greedy: #sets=7

OPT: #sets=5
Greedy Set-Cover Algorithm

Theorem: If optimal set cover has k sets, then greedy selects $\leq k \ln n$ sets

Greedy Algorithm:

- $C^* = \{ \}$
- Repeat until U is covered:
 - Pick S in C with highest # of uncovered elements
 - Add S to C^*

Define:
- $n(t) = \# \text{uncovered elements after step } t \text{ in greedy}$

Property 1: There is some S that covers at least $n(t)/k$ of the uncovered elements

Property 2: $n(t+1) \leq n(t)(1 - 1/k)$

Property 3: $n(T) \leq n(1 - 1/k)^T < 1$, when $T = k \ln n$
Summary: set cover

Given: Universe U with \(n\) elements
Collection C of sets of elements of U
Find the smallest subset \(C^*\) of C that covers all of U

Greedy Algorithm:
\[C^* = \{ \} \]
Repeat until U is covered:
 Pick S in C with highest \# of uncovered elements

Set-cover is \textbf{NP hard}, but approx. ratio of Greedy is \(O(\log n)\)
The Maximum Coverage Problem

Given:
- Universe U with n elements
- Collection C of sets of elements of U

Find a subset C* of C of size k that covers as many elements of U as possible

A different version of Set-cover

NP hard

Greedy algorithm also has a good approx-ratio
Applications of Set Cover and Max. Coverage

• Facility location problems
• Submodular optimization
Greedy Algorithms

• Direct argument - MST
• Exchange argument - Caching
• Greedy approximation algorithms
 • k-center, set-cover