CSE 202: Design and Analysis of Algorithms

Lecture 10

Instructor: Kamalika Chaudhuri
Announcements

• Midterm on Feb 14 in class

• Material: Greedy, Divide and Conquer, Dynamic Programming, Flows (including Capacity Scaling, but \textbf{not} including Preflow-push)
The Max Flow Problem: Given directed graph $G=(V,E)$, source s, sink t, edge capacities $c(e)$, find an s-t flow of maximum size.

An s-t flow is a function $f:E \rightarrow R$ such that:
- $0 \leq f(e) \leq c(e)$, for all edges e
- flow into node v = flow out of node v, for all nodes v except s and t,

\[\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e) \]

Size of flow $f =$ Total flow out of $s =$ total flow into t

Size of $f = 3$
The Max Flow Problem: Given directed graph $G=(V,E)$, source s, sink t, edge capacities $c(e)$, find an s-t flow of maximum size

$\begin{align*}
&\text{The Residual Graph: For a flow } f \\
&G_f = (V, E_f) \text{ where } E_f \subseteq E \cup E^R \\
&\text{For any } (u,v) \text{ in } E \text{ or } E^R, \text{ residual capacity: } \ c_f(u,v) = c(u,v) - f(u,v) + f(v,u) \\
&[\text{ignore edges with zero } c_f; \text{ don’t put them in } E_f]
\end{align*}$
Last Class: Facts about Flows

The Max Flow Problem: Given directed graph $G=(V,E)$, source s, sink t, edge capacities $c(e)$, find an s-t flow of maximum size.

The Residual Graph: For a flow f

$G_f = (V, E_f)$ where $E_f \subseteq E \cup E^R$

For any (u,v) in E or E^R, **residual capacity**:

$$c_f(u,v) = c(u,v) - f(u,v) + f(v,u)$$

[ignore edges with zero c_f: don’t put them in E_f]

Max Flow Min Cut Theorem:

Size(Max-Flow) = Capacity(Min-Cut)
The Max Flow Problem: Given directed graph $G=(V,E)$, source s, sink t, edge capacities $c(e)$, find an s-t flow of maximum size.

The Residual Graph: For a flow f

$G_f = (V, E_f)$ where $E_f \subseteq E \cup E^R$

For any (u,v) in E or E^R, **residual capacity:**

$c_f(u,v) = c(u,v) - f(u,v) + f(v,u)$

[ignore edges with zero c_f: don’t put them in E_f]

Max Flow Min Cut Theorem:

Size(Max-Flow) = Capacity(Min-Cut)

When is f a max flow?

When t is not reachable from s in G_f
Last Class: Algorithms for Max-Flow

Recall: $n = \#\text{vertices}, \ m = \#\text{edges in } G$

- Ford-Fulkerson: Running Time = $O(m F_{\text{max}})$

- Other efficient Ford-Fulkerson Style Algorithms:
 - Edmonds-Karp: Running Time = $O(nm^2)$
 - Capacity Scaling: Running Time = $O(m^2 \log C_{\text{max}})$

- Preflow-Push
Preflows

Preflow: A function \(f : E \rightarrow \mathbb{R} \) is a preflow if:

1. **Capacity Constraints:** \(0 \leq f(e) \leq c(e) \)
2. Instead of conservation constraints:

\[
\sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) \geq 0
\]

Excess \((v) = \sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) \)

Example

\[
\begin{align*}
G & \quad & f \\
\text{excess} &= 1 \\
\end{align*}
\]
Preflow-Push: Two Operations

Preflow: A function \(f: E \rightarrow \mathbb{R} \) is a preflow if:
1. **Capacity Constraints:** \(0 \leq f(e) \leq c(e) \)
2. Instead of conservation constraints:
 \[
 \sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) \geq 0
 \]

Excess(\(v \)) = \sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e)

Labeling \(h \) assigns a non-negative integer label \(h(v) \) to all \(v \) in \(V \)

Push(\(v, w \)): Applies if \(\text{excess}(v) > 0 \), \(h(w) < h(v) \), \((v, w) \) in \(E_f \)
 \[
 q = \min(\text{excess}(v), c_f(v,w))
 \]
 Add \(q \) to \(f(v, w) \)

Relabel(\(v \)): Applies if \(\text{excess}(v) > 0 \), for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by 1
Pre-Flow Push: The Algorithm

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for all other \(v \)
Start with preflow \(f: \) \(f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), for all other edges \(e \)

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w) \) in \(E_f \) such that \(\text{push}(v, w) \) can be applied
 \(\text{Push}(v, w) \)
 Else
 \(\text{Relabel}(v) \)

Push(\(v, w \)): Applies if \(\text{excess}(v) > 0, h(w) < h(v), (v, w) \) in \(E_f \)
 \(q = \min(\text{excess}(v), c_f(v, w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel(\(v \)): Applies if \(\text{excess}(v) > 0 \), for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by 1
Pre-Flow Push

• Algorithm
• Correctness
• Running Time Analysis
Correctness: Proof Outline

Three Steps:

- Compatibility: Show that the preflow f and the labeling h maintained by the algorithm always obeys a compatibility property

- If a flow f is compatible with some labeling, then f is a max-flow

- Preflow-push outputs a flow on termination
Correctness: Compatible Pre-Flows

Prefab: A function $f: E \rightarrow \mathbb{R}$ is a preflow if:
1. **Capacity Constraints:** $0 \leq f(e) \leq c(e)$
2. Instead of conservation constraints:
 \[
 \sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) \geq 0
 \]

Excess(v) = \[
\sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e)
\]

Preflow f and labeling h are compatible if:
1. $h(s) = n, h(t) = 0$
2. For all edges (v, w) in the residual graph G_f, $h(v) \leq h(w) + 1$

Invariant: Preflow f and labeling h are always compatible over the Preflow-Push algorithm
Running Time Analysis: Outline

1. How many Push Ops? Relabel Ops?
2. How to implement Push and Relabel Ops efficiently?
Running Time Analysis: Outline

1. How many Relabel Ops?

Main Idea: Bound the maximum value of $h(v)$ for any node v, and bound #relabel ops through this
Preflow Push: #Relabels

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

- **Start with labeling:** \(h(s) = n, h(t) = 0, h(v) = 0, \) for other \(v \)
- **Start with preflow:** \(f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
- Pick a node \(v \) with \(\text{excess}(v) > 0 \)
- If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 - \(\text{Push}(v, w) \)
- Else
 - \(\text{Relabel}(v) \)

- **Push(\(v, w \)):**
 - Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 - \(q = \min(\text{excess}(v), cf(v,w)) \)
 - Add \(q \) to \(f(v, w) \)

- **Relabel(\(v \)):**
 - Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) >= h(v) \)
 - Increase \(h(v) \) by 1

```
\begin{tabular}{|c|c|}
<table>
<thead>
<tr>
<th>s</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>\text{A} = \text{all nodes } v \text{ s.t. } s \text{ is reachable from } v \text{ in } G_f</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>\text{B} = \text{remaining nodes}</td>
<td></td>
</tr>
</tbody>
</table>
\end{tabular}
```
Preflow Push: #Relabels

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v
Start with preflow f: $f(e) = c(e)$ for $e = (s, v), f(e) = 0$, ow

While there is a node (other than t) with positive excess
- Pick a node v with $excess(v) > 0$
 - If there is an edge (v, w) in G_f s.t. $push(v, w)$ applies
 - Push(v, w)
 - Else
 - Relabel(v)

Property 1: In a preflow f, if $excess(v) > 0$, then there is a path from v to s in G_f

$$s \xrightarrow{} x \xrightarrow{} y \xrightarrow{} t$$
A = all nodes v s.t. s is reachable from v in G_f
B = remaining nodes

Fact: Any $e = (x, y)$ from A to B has $f(x, y) = 0$
If not, (y, x) is in G_f, so there is a y - s path

Push(v, w):
Applies if $excess(v) > 0$, $h(w) < h(v)$
$$q = min(excess(v), c_f(v, w))$$
Add q to $f(v, w)$

Relabel(v):
Applies if $excess(v) > 0$ and for all w s.t. (v, w) in G_f, $h(w) >= h(v)$
Increase $h(v)$ by 1
Preflow Push: #Relabels

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(G_f \) s.t. push\((v, w)\) applies
 Push\((v, w)\)
Else
 Relabel\((v)\)

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

Now, total excess of nodes in \(B = \)
\[
\sum_{v \in B} \sum_{e \text{ into } B} f(e) - \sum_{v \in B} \sum_{e \text{ out of } B} f(e) \geq 0
\]

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 \(q = \min(\text{excess}(v), c_f(v,w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by 1

Fact: Any \(e=(x, y) \) from \(A \) to \(B \) has \(f(x,y) = 0 \)
If not, \((y, x) \) is in \(G_f \), so there is a \(y - s \) path
Preflow Push: #Relabels

Property 1: In a preflow f, if $\text{excess}(v) > 0$, then there is a path from v to s in G_f.

Push(v, w):
Applies if $\text{excess}(v) > 0$, $h(w) < h(v)$
$q = \min(\text{excess}(v), c_f(v, w))$
Add q to $f(v, w)$

Relabel(v):
Applies if $\text{excess}(v) > 0$ and for all w s.t. (v, w) in E_f, $h(w) \geq h(v)$
Increase $h(v)$ by 1

Now, total excess of nodes in $B = \sum_{v \in B} \sum_{e \text{ into } B} f(e) - \sum_{v \in B} \sum_{e \text{ out of } B} f(e) \geq 0$

Three types of edges e in the sum:

Property 1: In a preflow f, if $\text{excess}(v) > 0$, then there is a path from v to s in G_f.

Fact: Any $e=(x, y)$ from A to B has $f(x, y) = 0$
If not, (y, x) is in G_f, so there is a y - s path
Preflow Push: #Relabels

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f \): \(f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess

Pick a node \(v \) with \(\text{excess}(v) > 0 \)

If there is an edge \((v, w)\) in \(E_f\) s.t. push(v, w) applies

Push(v, w)

Else

Relabel(v)

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

\[
\sum_{v \in B} \sum_{e \text{ into } B} f(e) - \sum_{v \in B} \sum_{e \text{ out of } B} f(e) \geq 0
\]

Three types of edges \(e \) in the sum:

1. Both endpoints of \(e \) are in \(B \): \(f(e) \) cancels out

Fact: Any \(e=(x, y) \) from \(A \) to \(B \) has \(f(x, y) = 0 \)

If not, \((y, x)\) is in \(G_r \), so there is a \(y - s \) path
Preflow Push: #Relabels

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f \): \(f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
 Push\((v, w)\)
 Else
 Relabel\((v)\)

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

\[
\begin{array}{c}
s \\
A \\
x \\
y \\
B \\
t
\end{array}
\]

A = all nodes \(v \) s.t. \(s \) is reachable from \(v \) in \(G_f \)
B = remaining nodes

Fact: Any \(e = (x, y) \) from A to B has \(f(x, y) = 0 \)
If not, \((y, x) \) is in \(G_f \), so there is a y - s path

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 \(q = \min(\text{excess}(v), c_f(v, w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by 1

Now, total excess of nodes in B =
\[
\sum_{v \in B} \left(\sum_{e \text{ into } B} f(e) - \sum_{v \in B} \sum_{e \text{ out of } B} f(e) \right) \geq 0
\]

Three types of edges \(e \) in the sum:
1. Both endpoints of \(e \) are in B: \(f(e) \) cancels out
2. \(e = (u, v) \), u in A, v in B: \(f(e) = 0 \)
Preflow Push: #ReLabels

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f \): \(f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w)\) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
 \(\text{Push}(v, w) \)
 Else
 \(\text{Relabel}(v) \)

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

Push(\(v, w \)):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v,w)) \)
Add \(q \) to \(f(v, w) \)

Relabel(\(v \)):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

Now, total excess of nodes in \(B \) =
\[
\sum_{v \in B} \sum_{e \text{ into } B} f(e) - \sum_{v \in B} \sum_{e \text{ out of } B} f(e) \geq 0
\]

Three types of edges \(e \) in the sum:
1. Both endpoints of \(e \) are in \(B \): \(f(e) \) cancels out
2. \(e = (u, v) \), \(u \) in \(A \), \(v \) in \(B \): \(f(e) = 0 \)
3. \(e = (v, u) \), \(u \) in \(A \), \(v \) in \(B \)

Fact: Any \(e = (x, y) \) from \(A \) to \(B \) has \(f(x,y) = 0 \)
If not, \((y, x) \) is in \(G_f \), so there is a \(y - s \) path
Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
Push\((v, w) \)
Else
Relabel\((v) \)

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

Fact: Any \(e = (x, y) \) from \(A \) to \(B \) has \(f(x, y) = 0 \)
If not, \((y, x) \) is in \(G_f \), so there is a \(y - s \) path

Push\((v, w) \):
Applies if \(\text{excess}(v) > 0 \), \(h(w) < h(v) \)
\[q = \min(\text{excess}(v), c_f(v,w)) \]
Add \(q \) to \(f(v, w) \)

Relabel\((v) \):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t. \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

Now, total excess of nodes in \(B = \)
\[
\sum_{v \in B} \left(\sum_{e \text{ into } B} f(e) - \sum_{e \text{ out of } B} f(e) \right) \geq 0
\]

Three types of edges \(e \) in the sum:
1. Both endpoints of \(e \) are in \(B \): \(f(e) \) cancels out
2. \(e = (u, v) \), \(u \) in \(A \), \(v \) in \(B \): \(f(e) = 0 \)
3. \(e = (v, u) \), \(u \) in \(A \), \(v \) in \(B \)

Total excess of nodes in \(B = - \sum_{v \in B} \sum_{u \in A} f(v, u) \geq 0 \)
Preflow Push: #Relabels

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 Push \((v, w)\)
Else
 Relabel \((v)\)

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

![Diagram](https://via.placeholder.com/150)

A = all nodes \(v \) s.t. \(s \) is reachable from \(v \) in \(G_f \)
B = remaining nodes

Fact: Any \(e = (x, y) \) from \(A \) to \(B \) has \(f(x, y) = 0 \)
If not, \((y, x) \) is in \(G_f \), so there is a \(y - s \) path

Push \((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 \(q = \min(\text{excess}(v), c_f(v, w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel \((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by \(1 \)

Now, total excess of nodes in \(B = \)
\[
\sum_{v \in B} \sum_{e \text{ into } B} f(e) - \sum_{v \in B} \sum_{e \text{ out of } B} f(e) \geq 0
\]

Three types of edges \(e \) in the sum:
1. Both endpoints of \(e \) are in \(B \): \(f(e) \) cancels out
2. \(e = (u, v) \), \(u \) in \(A \), \(v \) in \(B \): \(f(e) = 0 \)
3. \(e = (v, u) \), \(u \) in \(A \), \(v \) in \(B \)

Total excess of nodes in \(B = \)- \(\sum_{v \in B} \sum_{u \in A} f(v, u) \geq 0 \)

As \(\text{excess}(v) \) is never \(<0\), \(\text{excess}(v) = 0 \) for \(v \) in \(B \)
Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f \): \(f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess

Pick a node \(v \) with \(\text{excess}(v) > 0 \)

If there is an edge \((v, w) \) in \(E_f \) s. t. \(\text{push}(v, w) \) applies

Push\((v, w)\)

Else

Relabel\((v)\)

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0 \), \(h(w) < h(v) \)
\[q = \min(\text{excess}(v), c_f(v, w)) \]
Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t. \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

Compatibility of \(f \) and \(h \):
1. \(h(s) = n, h(t) = 0 \)
2. For all edges \((v, w) \) in \(G_f \),
 \[h(v) \leq h(w) + 1 \]

Property 1: In a preflow \(f \), if \(\text{excess}(v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

Property 2: At any point, for any \(v \), \(h(v) \leq 2n - 1 \)
Preflow Push: #Relabels

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s,v), f(e) = 0, \) ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with excess\((v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s.t. push\((v, w) \) applies
 Push\((v, w)\)
Else
 Relabel\((v)\)

Property 1:
In a preflow \(f \), if excess\((v) > 0 \), then there is a path from \(v \) to \(s \) in \(G_f \)

Property 2:
At any point, for any \(v \), \(h(v) \leq 2n - 1 \)

Proof: If excess\((v) > 0 \), there is a \(v-s \) path in \(G_f \)
Let \(v = v_1, \ldots, v_k = s \) be the path

Push\((v, w)\):
Applies if excess\((v) > 0, h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v,w)) \)
Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if excess\((v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

Compatibility of \(f \) and \(h \):
1. \(h(s) = n, h(t) = 0 \)
2. For all edges \((v, w) \) in \(G_f \), \(h(w) \geq h(v) \)
 \(h(v) \leq h(w) + 1 \)
Preflow Push: \#Relabels

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v
Start with preflow f: $f(e) = c(e)$ for $e = (s, v), f(e) = 0$, ow

While there is a node (other than t) with positive excess
Pick a node v with $excess(v) > 0$
If there is an edge (v, w) in G_f s. t. push(v, w) applies
 Push(v, w)
Else
 Relabel(v)

Property 1: In a preflow f, if $excess(v) > 0$, then there is a path from v to s in G_f

Property 2: At any point, for any v, $h(v) \leq 2n - 1$

Proof: If $excess(v) > 0$, there is a v-s path in G_f
Let $v = v_1, ..., v_k = s$ be the path
By compatibility:
$h(s) = n, h(v_{k-1}) \leq n + 1, h(v_1) \leq n+k-1 \leq 2n - 1$

Push(v, w):
Applies if $excess(v) > 0$, $h(w) < h(v)$
 $q = \min(excess(v), c_f(v,w))$
 Add q to $f(v, w)$

Relabel(v):
Applies if $excess(v) > 0$ and for all w s. t. (v, w) in E_f, $h(w) \geq h(v)$
 Increase $h(v)$ by 1

Compatibility of f and h:
1. $h(s) = n, h(t) = 0$
2. For all edges (v, w) in G_f, $h(v) \leq h(w) + 1$
Preflow Push: #Relabels

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v
Start with preflow f: $f(e) = c(e)$ for $e = (s, v), f(e) = 0$, ow

While there is a node (other than t) with positive excess
Pick a node v with $\text{excess}(v) > 0$
If there is an edge (v, w) in G_f s.t. push(v, w) applies
 Push(v, w)
Else
 Relabel(v)

Property 1: In a preflow f, if $\text{excess}(v) > 0$, then there is a path from v to s in G_f

Property 2: At any point, for any v, $h(v) \leq 2n - 1$

Proof: If $\text{excess}(v) > 0$, there is a v-s path in G_f
Let $v = v_1, ..., v_k = s$ be the path
By compatibility:
$h(s) = n, h(v_{k-1}) \leq n + 1, h(v_1) \leq n+k-1 \leq 2n - 1$

Push(v, w):
Applies if $\text{excess}(v) > 0, h(w) < h(v)$
$q = \min(\text{excess}(v), c_r(v, w))$
Add q to $f(v, w)$

Relabel(v):
Applies if $\text{excess}(v) > 0$ and for all w s.t (v, w) in G_f, $h(w) \geq h(v)$
Increase $h(v)$ by 1

Compatibility of f and h:
1. $h(s) = n, h(t) = 0$
2. For all edges (v, w) in G_f, $h(v) \leq h(w) + 1$

If $\text{excess}(v) = 0$, then $h(v)$ has not changed since the last time v had excess > 0
Thus, $h(v) \leq 2n - 1$ also

\[
\begin{matrix}
\text{v1} & \text{v2} & \text{v3} & \ldots & \text{vk-1} & \text{s = vk} \\
\end{matrix}
\]
Preflow Push: #Relabels

Property 1: In a preflow f, if $\text{excess}(v) > 0$, then there is a path from v to s in G_f.

Property 2: At any point in the algorithm, for any v, $h(v) \leq 2n - 1$.

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v.

Start with preflow f: $f(e) = c(e)$ for $e = (s, v)$, $f(e) = 0$, otherwise.

While there is a node (other than t) with positive excess:
- Pick a node v with $\text{excess}(v) > 0$.
- If there is an edge (v, w) in E_f such that $\text{push}(v, w)$ applies:
 - Push(v, w)
- Else:
 - Relabel(v)

Push(v, w):
Applies if $\text{excess}(v) > 0$, $h(w) < h(v)$.
$\q = \min(\text{excess}(v), c_f(v, w))$
Add \q to $f(v, w)$

Relabel(v):
Applies if $\text{excess}(v) > 0$ and for all w such that $(v, w) \in E_f$, $h(w) \geq h(v)$.
Increase $h(v)$ by 1.
Preflow Push: #Relabels

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0\), for other \(v\)

Start with preflow \(f\): \(f(e) = c(e)\) for \(e = (s, v)\), \(f(e) = 0\), ow

While there is a node (other than \(t\)) with positive excess

- Pick a node \(v\) with \(\text{excess}(v) > 0\)
- If there is an edge \((v, w)\) in \(E_f\) s.t. \(\text{push}(v, w)\) applies
 - \(\text{Push}(v, w)\)
- Else
 - \(\text{Relabel}(v)\)

Property 1: In a preflow \(f\), if \(\text{excess}(v) > 0\), then there is a path from \(v\) to \(s\) in \(G_f\)

Property 2: At any point in the algorithm, for any \(v\), \(h(v) \leq 2n - 1\)

Property 3: Any node can be relabeled at most \(2n\) times in the algorithm

Proof: Labels never decrease, start at 0, increase by at least 1 per relabel, and can only go up to \(2n - 1\)

Push\((v, w)\):
- Applies if \(\text{excess}(v) > 0\), \(h(w) < h(v)\)
- \(q = \min(\text{excess}(v), c_f(v, w))\)
- Add \(q\) to \(f(v, w)\)

Relabel\((v)\):
- Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t. \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)
- Increase \(h(v)\) by 1
Preflow Push: #Relabels

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v
Start with preflow f: $f(e) = c(e)$ for $e = (s, v)$, $f(e) = 0$, ow

While there is a node (other than t) with positive excess
 Pick a node v with $\text{excess}(v) > 0$
 If there is an edge (v, w) in E_f s.t. $\text{push}(v, w)$ applies
 Push(v, w)
 Else
 Relabel(v)

Property 1: In a preflow f, if $\text{excess}(v) > 0$, then there is a path from v to s in G_f

Property 2: At any point in the algorithm, for any v, $h(v) \leq 2n - 1$

Property 3: Any node can be relabeled at most $2n$ times in the algorithm

Total #relabel operations = $O(n^2)$

Push(v, w):
Applies if $\text{excess}(v) > 0$, $h(w) < h(v)$
 $q = \min(\text{excess}(v), c_r(v, w))$
 Add q to $f(v, w)$

Relabel(v):
Applies if $\text{excess}(v) > 0$ and for all w s.t. (v, w) in E_f, $h(w) \geq h(v)$
 Increase $h(v)$ by 1

Diagram:
- Nodes v, w
- Edges between nodes
- Height h axis
- Nodes labeled with h values
Running Time Analysis: Outline

1. How many Push Ops? Relabel Ops?

2. How to implement Push and Relabel Ops efficiently?
Running Time Analysis: Outline

1. How many Relabel Ops? How many Push Ops?

Two types of Push Ops:

Saturating Pushes: \((v, w)\) is saturated after \(\text{push}(v, w)\)

 Same edge can’t be pushed on until a relabel (we will see why!)

Non-saturating Pushes: \(\text{excess}(v) = 0\) after \(\text{push}(v, w)\)
Preflow Push: \#Pushes

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w)\) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
 Push\((v, w)\)
 Else
 Relabel\((v)\)

Two kinds of Pushes:
 Saturating: \((v, w)\) is not in \(G_f \) after push
 Nonsaturating: \(\text{excess}(v) \) becomes 0 after push

Property 1: There are at most \(2mn \) saturating pushes

Proof: For a fixed edge \((v, w)\), after a saturating push, we can only push along \((v, w)\) again once \(v \) is relabeled

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 \(q = \min(\text{excess}(v), c_f(v,w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t. \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by 1
Preflow Push: #Pushes

Start with labeling: $h(s) = n, h(t) = 0, h(v) = 0$, for other v
Start with preflow f: $f(e) = c(e)$ for $e = (s, v), f(e) = 0$, otherwise

While there is a node (other than t) with positive excess
Pick a node v with $\text{excess}(v) > 0$
If there is an edge (v, w) in E_f s.t. push(v, w) applies
 Push(v, w)
Else
 Relabel(v)

Two kinds of Pushes:
- **Saturating**: (v, w) is not in G_f after push
- **Nonsaturating**: $\text{excess}(v)$ becomes 0 after push

Property 1: There are at most $2mn$ saturating pushes

Proof: For a fixed edge (v, w), after a saturating push, we can only push along (v, w) again once v is relabeled

Push(v, w):
 Applies if $\text{excess}(v) > 0$, $h(w) < h(v)$
 $q = \min(\text{excess}(v), c_f(v, w))$
 Add q to $f(v, w)$

Relabel(v):
 Applies if $\text{excess}(v) > 0$ and for all w s.t (v, w) in E_f, $h(w) \geq h(v)$
 Increase $h(v)$ by 1

(v,w) disappears from G_f after saturating push, appears only after w to v push
Preflow Push: \#Pushes

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w)\) in \(E_f \) s. t. \(\text{push}(v, w) \) applies
Push\((v, w)\)
Else
Relabel\((v)\)

Two kinds of Pushes:
- **Saturating**: \((v, w)\) is not in \(G_f \) after push
- **Nonsaturating**: \(\text{excess}(v) \) becomes 0 after push

Property 1: There are at most \(2mn \) saturating pushes

Proof: For a fixed edge \((v, w)\), after a saturating push, we can only push along \((v, w)\) again once \(v \) is relabeled
\#relabels of \(v \) \(\leq 2n \)

Push\((v, w)\):
- Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
- \(q = \min(\text{excess}(v), c_f(v,w)) \)
- Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
- Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
- Increase \(h(v) \) by 1

\((v,w)\) disappears from \(G_f \) after saturating push, appears only after \(w \) to \(v \) push
Preflow Push: \#Pushes

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f : f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
- Pick a node \(v \) with excess\((v) > 0\)
 - If there is an edge \((v, w)\) in \(E_f \) s.t. push\((v, w)\) applies
 - Push\((v, w)\)
 - Else
 - Relabel\((v)\)

Two kinds of Pushes:
 - **Saturating:** \((v, w)\) is not in \(G_f \) after push
 - **Nonsaturating:** excess\((v)\) becomes 0 after push

Property 1: There are at most \(2mn \) saturating pushes

Proof: For a fixed edge \((v, w)\), after a saturating push, we can only push along \((v, w)\) again once \(v \) is relabeled
- \#relabels of \(v \) \(\leq 2n \)
- \#saturating pushes along \((v, w)\) \(\leq 2n \)

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
- \(q = \min(\text{excess}(v), c_f(v, w)) \)
- Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t. \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
- Increase \(h(v) \) by 1

\[(v, w) \text{ disappears from } G_f \text{ after saturating push, appears only after } w \text{ to } v \text{ push} \]
Preflow Push: \#Pushes

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v), f(e) = 0, \text{ow} \)

While there is a node (other than \(t \)) with positive excess
- Pick a node \(v \) with \(\text{excess}(v) > 0 \)
- If there is an edge \((v, w)\) in \(E_f \) s. t. push\((v, w)\) applies
 - Push\((v, w)\)
- Else
 - Relabel\((v)\)

Two kinds of Pushes:
- **Saturating:** \((v,w)\) is not in \(G_f \) after push
- **Nonsaturating:** \(\text{excess}(v) \) becomes 0 after push

Property 1: There are at most \(2mn \) saturating pushes

Proof: For a fixed edge \((v,w)\), after a saturating push, we can only push along \((v, w)\) again once \(v \) is relabeled
- \#relabels of \(v \) \(\leq 2n \)
- \#saturating pushes along \((v, w)\) \(\leq 2n \)
- \#saturating pushes along all \(m \) edges \(\leq 2nm \)

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
- \(q = \min(\text{excess}(v), c_f(v, w)) \)
- Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t. \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
- Increase \(h(v) \) by 1

\((v,w) \) disappears from \(G_f \) after saturating push, appears only after \(w \) to \(v \) push
Running Time Analysis: Outline

1. How many Relabel Ops? How many Push Ops?

Two types of Push Ops:

Saturating Pushes: \((v, w)\) is saturated after \(\text{push}(v, w)\)
 - Same edge can’t be pushed on until a relabel

Non-saturating Pushes: \(\text{excess}(v) = 0\) after \(\text{push}(v, w)\)
 - Harder to bound. Need to use a potential function argument
Two kinds of Pushes:
- **Saturating:** \((v,w)\) is not in \(G_f\) after push
- **Nonsaturating:** \(\text{excess}(v)\) becomes 0 after push

Property 0: There are \(\leq 2n^2\) relabels
Property 1: There are \(\leq 2mn\) saturating pushes
Property 2: There are \(\leq 4mn^2\) non-saturating pushes

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0\), \(h(w) < h(v)\)
\[
q = \min(\text{excess}(v), c_f(v,w))
\]
Add \(q\) to \(f(v, w)\)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)
Increase \(h(v)\) by 1
Preflow Push: #Pushes

Two kinds of Pushes:
- **Saturating**: \((v, w)\) is not in \(G_f\) after push
- **Nonsaturating**: \(\text{excess}(v)\) becomes 0 after push

Property 0: There are \(\leq 2n^2\) relabels
Property 1: There are \(\leq 2mn\) saturating pushes
Property 2: There are \(\leq 4mn^2\) non-saturating pushes

Proof: Define a potential function \(G(f, h)\):
\[
G(f, h) = \sum_{v: \text{excess}(v) > 0} h(v)
\]

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v)\)
\[q = \min(\text{excess}(v), c_f(v, w))\]
Add \(q\) to \(f(v, w)\)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)
Increase \(h(v)\) by 1
Preflow Push: #Pushes

Two kinds of Pushes:
- **Saturating:** \((v,w) \) is not in \(G_f \) after push
- **Nonsaturating:** \(\text{excess}(v) \) becomes 0 after push

Property 0: There are \(\leq 2n^2 \) relabels
Property 1: There are \(\leq 2mn \) saturating pushes
Property 2: There are \(\leq 4mn^2 \) non-saturating pushes

Proof: Define a potential function \(G(f, h) \):
\[
G(f, h) = \sum_{v: \text{excess}(v) > 0} h(v)
\]
Initially, \(G(f, h) = 0 \)
At any time, \(G(f, h) \geq 0 \)

Push\((v, w)\):
- Applies if \(\text{excess}(v) > 0 \), \(h(w) < h(v) \)
- \(q = \min(\text{excess}(v), c_f(v,w)) \)
- Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
- Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
- Increase \(h(v) \) by 1
Preflow Push: #Pushes

Two kinds of Pushes:

Saturating: \((v,w)\) is not in \(G_f\) after push

Nonsaturating: \(\text{excess}(v)\) becomes 0 after push

Property 0: There are \(\leq 2n^2\) relabels

Property 1: There are \(\leq 2mn\) saturating pushes

Property 2: There are \(\leq 4mn^2\) non-saturating pushes

Proof: Define a potential function \(G(f, h)\):

\[
G(f, h) = \sum_{v: \text{excess}(v) > 0} h(v)
\]

Initially, \(G(f, h) = 0\)

At any time, \(G(f, h) \geq 0\)

At a relabel operation, \(G(f, h)\) can increase by 1

Push\((v, w)\):

 Applies if \(\text{excess}(v) > 0, h(w) < h(v)\)

\[
q = \min(\text{excess}(v), c_f(v, w))
\]

Add \(q\) to \(f(v, w)\)

Relabel\((v)\):

 Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)

Increase \(h(v)\) by 1
Preflow Push: #Pushes

Two kinds of Pushes:

- **Saturating**: (v, w) is not in G_f after push
- **Nonsaturating**: excess(v) becomes 0 after push

Property 0: There are <= 2n^2 relabels
Property 1: There are <= 2mn saturating pushes
Property 2: There are <= 4mn^2 non-saturating pushes

Proof: Define a potential function G(f, h):

\[G(f, h) = \sum_{v : excess(v) > 0} h(v) \]

Initially, G(f, h) = 0
At any time, G(f, h) >= 0
At a relabel operation, G(f, h) can increase by 1
At a saturating push operation, G(f, h) can increase if w gets >0 excess. Total increase = h(w) <= 2n - 1

Push(v, w):
Applies if excess(v) > 0, h(w) < h(v)
q = \min\{excess(v), c_f(v, w)\}
Add q to f(v, w)

Relabel(v):
Applies if excess(v) > 0 and for all w s.t. (v, w) in E_f, h(w) >= h(v)
Increase h(v) by 1
Preflow Push: \#Pushes

Two kinds of Pushes:
- **Saturating**: \((v, w)\) is not in \(G_f\) after push
- **Nonsaturating**: \(\text{excess}(v)\) becomes 0 after push

Property 0: There are \(\leq 2n^2\) relabels
Property 1: There are \(\leq 2mn\) saturating pushes
Property 2: There are \(\leq 4mn^2\) non-saturating pushes

Proof: Define a potential function \(G(f, h)\):
\[
G(f, h) = \sum_{v: \text{excess}(v) > 0} h(v)
\]
Initially, \(G(f, h) = 0\)

At any time, \(G(f, h) \geq 0\)

At a relabel operation, \(G(f, h)\) can increase by 1

At a saturating push operation, \(G(f, h)\) can increase if \(w\) gets \(>0\) excess. Total increase = \(h(w) \leq 2n - 1\)

At a non-saturating push operation, \(G(f, h)\) will decrease by \(h(v)\), but may increase by \(h(w)\) if \(w\) gets \(>0\) excess
But \(h(v) > h(w)\), so \(G(f, h)\) will decrease by at least 1

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v)\)
\[
q = \min(\text{excess}(v), c_f(v, w))
\]
Add \(q\) to \(f(v, w)\)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)
Increase \(h(v)\) by 1
Preflow Push: \#Pushes

\textbf{Two kinds of Pushes:}
\begin{itemize}
\item \textbf{Saturating:} \((v,w)\) is not in \(G_f\) after push
\item \textbf{Nonsaturating:} \(\text{excess}(v)\) becomes 0 after push
\end{itemize}

\textbf{Property 0:} There are \(\leq 2n^2\) relabels
\textbf{Property 1:} There are \(\leq 2mn\) saturating pushes
\textbf{Property 2:} There are \(\leq 4mn^2\) non-saturating pushes

\textbf{Proof:} Define a potential function \(G(f, h):\)
\[
G(f, h) = \sum_{v: \text{excess}(v) > 0} h(v)
\]

Initially, \(G(f, h) = 0\)
At any time, \(G(f, h) \geq 0\)
At a relabel operation, \(G(f, h)\) can increase by 1
At a saturating push operation, \(G(f, h)\) can increase if \(w\) gets \(> 0\) excess. Total increase = \(h(w) \leq 2n - 1\)
At a non-saturating push operation, \(G(f, h)\) will decrease by \(h(v)\), but may increase by \(h(w)\) if \(w\) gets \(> 0\) excess
But \(h(v) > h(w)\), so \(G(f, h)\) will decrease by at least 1

\textbf{Push}(v, w):
Applies if \(\text{excess}(v) > 0, h(w) < h(v)\)
\[
q = \min(\text{excess}(v), cf(v,w))
\]
Add \(q\) to \(f(v, w)\)

\textbf{Relabel}(v):
Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)
Increase \(h(v)\) by 1

Total increase from relabels \(\leq 2n^2\)
Preflow Push: \#Pushes

Two kinds of Pushes:

Saturating: \((v,w)\) is not in \(G_f\) after push
Nonsaturating: \(\text{excess}(v)\) becomes 0 after push

Property 0: There are \(\leq 2n^2\) relabels
Property 1: There are \(\leq 2mn\) saturating pushes
Property 2: There are \(\leq 4mn^2\) non-saturating pushes

Proof: Define a potential function \(G(f, h)\):

\[
G(f, h) = \sum_{v: \text{excess}(v) > 0} h(v)
\]

Initially, \(G(f, h) = 0\)

At any time, \(G(f, h) \geq 0\)

At a relabel operation, \(G(f, h)\) can increase by 1

At a saturating push operation, \(G(f, h)\) can increase if \(w\) gets \(>0\) excess. Total increase = \(h(w) \leq 2n - 1\)

At a non-saturating push operation, \(G(f, h)\) will decrease by \(h(v)\), but may increase by \(h(w)\) if \(w\) gets \(>0\) excess
But \(h(v) > h(w)\), so \(G(f, h)\) will decrease by at least 1

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0\), \(h(w) < h(v)\)
\(q = \min(\text{excess}(v), c_f(v, w))\)
Add \(q\) to \(f(v, w)\)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)
Increase \(h(v)\) by 1

Total increase from relabels \(\leq 2n^2\)
Total increase from saturating pushes \(\leq 2mn(2n - 1)\)
Preflow Push: #Pushes

Two kinds of Pushes:

Saturating: \((v, w)\) is not in \(G_f\) after push

Nonsaturating: \(\text{excess}(v)\) becomes 0 after push

Property 0: There are \(\leq 2n^2\) relabels

Property 1: There are \(\leq 2mn\) saturating pushes

Property 2: There are \(\leq 4mn^2\) non-saturating pushes

Proof: Define a potential function \(G(f, h)\):

\[
G(f, h) = \sum_{v: \text{excess}(v) > 0} h(v)
\]

Initially, \(G(f, h) = 0\)

At any time, \(G(f, h) \geq 0\)

At a relabel operation, \(G(f, h)\) will increase by 1

At a saturating push operation, \(G(f, h)\) can increase if \(w\) gets >0 excess. Total increase = \(h(w) \leq 2n - 1\)

At a non-saturating push operation, \(G(f, h)\) will decrease by \(h(v)\), but may increase by \(h(w)\) if \(w\) gets >0 excess

But \(h(v) > h(w)\), so \(G(f, h)\) will decrease by at least 1

Total increase from relabels \(\leq 2n^2\)

Total increase from saturating pushes

pushes \(\leq 2mn(2n - 1)\)

(#non-saturating pushes) \(\times 1\)

\(\leq \) Total decrease from such pushes

\(\leq \) total increase from anything else

\(\leq 2n^2 + 2mn(2n - 1) = 4mn^2\)

Push\((v, w)\):

Applies if \(\text{excess}(v) > 0\), \(h(w) < h(v)\)

\[q = \min(\text{excess}(v), c_f(v, w))\]

Add \(q\) to \(f(v, w)\)

Relabel\((v)\):

Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)

Increase \(h(v)\) by 1
Preflow Push: #Pushes

Two kinds of Pushes:
- **Saturating**: \((v,w)\) is not in \(G_f\) after push
- **Nonsaturating**: \(\text{excess}(v)\) becomes 0 after push

Property 0: There are \(\leq 2n^2\) relabels

Property 1: There are \(\leq 2mn\) saturating pushes

Property 2: There are \(\leq 4mn^2\) non-saturating pushes

Proof: Define a potential function \(G(f, h)\):
\[
G(f, h) = \sum_{v: \text{excess}(v) > 0} h(v)
\]
Initially, \(G(f, h) = 0\)
At any time, \(G(f, h) \geq 0\)
At a relabel operation, \(G(f, h)\) can increase by 1
At a saturating push operation, \(G(f, h)\) can increase if \(w\) gets \(> 0\) excess. Total increase = \(h(w) \leq 2n - 1\)
At a non-saturating push operation, \(G(f, h)\) will decrease by \(h(v)\), but may increase by \(h(w)\) if \(w\) gets \(> 0\) excess. But \(h(v) > h(w)\), so \(G(f, h)\) will decrease by at least 1

\[
\text{Total increase from relabels} \leq 2n^2
\]
\[
\text{Total increase from saturating pushes} \leq 2mn(2n - 1)
\]
\[
(\#\text{non-saturating pushes}) \times 1 \leq \text{Total decrease from such pushes} \leq \text{total increase from anything else} \leq 2n^2 + 2mn(2n - 1) = 4mn^2
\]

#Non-saturating Pushes \(\leq 4mn^2\)

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0\), \(h(w) < h(v)\)
\[q = \min(\text{excess}(v), c_f(v, w))\]
Add \(q\) to \(f(v, w)\)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0\) and for all \(w\) s.t \((v, w)\) in \(E_f\), \(h(w) \geq h(v)\)
Increase \(h(v)\) by 1
Preflow Push: #Pushes

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), otherwise

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w) \) in \(E_f \) s.t. push\((v, w)\) applies
 Push\((v, w)\)
 Else
 Relabel\((v)\)

Two kinds of Pushes:
 Saturating: \((v, w)\) is not in \(G_f \) after push
 Nonsaturating: \(\text{excess}(v) \) becomes 0 after push

Property 0: There are at most \(2n^2 \) relabels
Property 1: There are at most \(2mn \) saturating pushes
Property 2: There are at most \(4mn^2 \) non-saturating pushes

Total #Pushes: \(O(mn^2) \)
Running Time Analysis: Outline

1. How many Push Ops? Relabel Ops?

2. How to implement Push and Relabel Ops efficiently?
Preflow Push: Data Structures

Start with labeling:
\[h(s) = n, h(t) = 0, h(v) = 0, \text{ for other } v \]

Start with preflow:
\[f(e) = c(e) \text{ for } e = (s, v), f(e) = 0, \text{ otherwise} \]

While there is a node (other than \(t \)) with positive excess:
- Pick a node \(v \) with \(\text{excess}(v) > 0 \)
- If there is an edge \((v, w)\) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 \[\text{Push}(v, w) \]
- Else
 \[\text{Relabel}(v) \]

Push\((v, w)\):
- Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
- \(q = \min(\text{excess}(v), c_f(v, w)) \)
- Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
- Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t. \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
- Increase \(h(v) \) by 1

1. For each label, use a list to maintain nodes with excess > 0

<table>
<thead>
<tr>
<th>Label Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h=0)</td>
</tr>
<tr>
<td>(h=1)</td>
</tr>
<tr>
<td>....</td>
</tr>
</tbody>
</table>

1. For each label, use a list to maintain nodes with excess > 0
 Time to select a v with excess(v) > 0: O(1)

Start with labeling:
\[h(s) = n, h(t) = 0, h(v) = 0, \text{ for other } v \]

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0, \) ow

While there is a node (other than t) with positive excess
 Pick a node \(v \) with excess(v) > 0
 If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 \(\text{Push}(v, w) \)
 Else
 \(\text{Relabel}(v) \)

Push(v, w):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 \(q = \min(\text{excess}(v), c_f(v,w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel(v):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f, \) \(h(w) >= h(v) \)
 Increase \(h(v) \) by 1
Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)

Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v), f(e) = 0, \) ow

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w) \) in \(E_f \) s. t. push\((v, w)\) applies
 Push\((v, w)\)
 Else
 Relabel\((v)\)

Push\((v, w)\):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 \(q = \min(\text{excess}(v), c_f(v, w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s. t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
 Increase \(h(v) \) by 1

1. For each label, use a list to maintain nodes with \(\text{excess} > 0 \)
 Time to select a \(v \) with \(\text{excess}(v) > 0 \): \(O(1) \)
 Time to insert or delete: \(O(1) \)

Label Lists

<table>
<thead>
<tr>
<th>Label</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>h=0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

....
Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), otherwise

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
Push(\(v, w \))
Else
Relabel(\(v \))

1. For each label, use a list to maintain nodes with excess > 0
 Time to select a \(v \) with \(\text{excess}(v) > 0 \): \(O(1) \)
 Time to insert or delete: \(O(1) \)

2. For each \(v \), maintain all \((v,w)\) in \(E_f \) in an adjacency list

Push(\(v, w \)):
Applies if \(\text{excess}(v) > 0 \), \(h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_f(v,w)) \)
Add \(q \) to \(f(v, w) \)

Relabel(\(v \)):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
Increase \(h(v) \) by 1

Label Lists

\(h = 0 \)

\(h = 1 \)

...

\(P(v) \)

\(\text{adj-list}(v) \)
Preflow Push: Data Structures

1. For each label, use a list to maintain nodes with excess > 0
 - Time to select a v with excess(v) > 0: O(1)
 - Time to insert or delete: O(1)

2. For each v, maintain all (v, w) in E_f in an adjacency list
 - Keep a pointer P(v) to the next edge we can push on

Push(v, w):
- Applies if excess(v) > 0, h(w) < h(v)
- q = min(excess(v), cf(v, w))
- Add q to f(v, w)

Relabel(v):
- Applies if excess(v) > 0 and for all w s.t. (v, w) in E_f, h(w) >= h(v)
- Increase h(v) by 1

Label Lists

```
<table>
<thead>
<tr>
<th>Label</th>
<th>h=0</th>
<th>h=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
P(v)
```

adj-list(v)
Preflow Push: Data Structures

1. For each label, use a list to maintain nodes with excess > 0
 Time to select a v with excess(v) > 0: O(1)
 Time to insert or delete: O(1)

2. For each v, maintain all (v,w) in E_f in an adjacency list
 Keep a pointer P(v) to the next edge we can push on
 If excess(v) = 0, P(v) stays on the current edge

Start with labeling:
\text{h}(s) = n, \text{h}(t) = 0, \text{h}(v) = 0, \text{for other v}

Start with preflow f: \text{f}(e) = c(e) for e = (s, v), \text{f}(e) = 0, ow

While there is a node (other than t) with positive excess
 Pick a node v with excess(v) > 0
 If there is an edge (v, w) in E_f s. t. push(v, w) applies
 Push(v, w)
 Else
 Relabel(v)

\textbf{Push}(v, w):
Applies if excess(v) > 0, h(w) < h(v)
q = \min(\text{excess}(v), c_f(v,w))
Add q to f(v, w)

\textbf{Relabel}(v):
Applies if excess(v) > 0 and for all w s.t. (v, w) in E_f, h(w) >= h(v)
Increase h(v) by 1

\textbf{Label Lists}

- h=0
- h=1
-
- P(v)
- adj-list(v)
Preflow Push: Data Structures

1. For each label, use a list to maintain nodes with excess > 0
 Time to select a v with excess(v) > 0: $O(1)$
 Time to insert or delete: $O(1)$

2. For each v, maintain all (v, w) in E_f in an adjacency list
 Keep a pointer $P(v)$ to the next edge we can push on
 If excess(v) = 0, $P(v)$ stays on the current edge
 Move $P(v)$ by 1 when current edge is saturated
 [Recall: If we push(v, w) and saturate it, then, we cannot push(v, w) again until v is relabeled]

Start with labeling:
- $h(s) = n$, $h(t) = 0$, $h(v) = 0$, for other v

Start with preflow f: $f(e) = c(e)$ for $e = (s, v)$, $f(e) = 0$, ow

While there is a node (other than t) with positive excess
 Pick a node v with excess(v) > 0
 If there is an edge (v, w) in E_f s. t. push(v, w) applies
 Push(v, w)
 Else
 Relabel(v)

Push(v, w):
Applies if excess(v) > 0, $h(w) < h(v)$
$q = \min(\text{excess}(v), c_f(v, w))$
Add q to $f(v, w)$

Relabel(v):
Applies if excess(v) > 0 and for all
w s.t. (v, w) in E_f, $h(w) \geq h(v)$
Increase $h(v)$ by 1

Label Lists

<table>
<thead>
<tr>
<th>h=0</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

adj-list(v)
Preflow Push: Data Structures

1. For each label, use a list to maintain nodes with excess > 0
 - Time to select a v with excess(v) > 0: O(1)
 - Time to insert or delete: O(1)

2. For each v, maintain all (v,w) in E_f in an adjacency list
 - Keep a pointer P(v) to the next edge we can push on
 - If excess(v) = 0, P(v) stays on the current edge
 - Move P(v) by 1 when current edge is saturated
 - [Recall: If we push(v,w) and saturate it, then, we cannot push(v,w) again until v is relabeled]
 - Update P(v) and the list when v is relabeled

Start with labeling:
- h(s) = n, h(t) = 0, h(v) = 0, for other v
- Start with preflow f: f(e) = c(e) for e = (s, v), f(e) = 0, ow

While there is a node (other than t) with positive excess
- Pick a node v with excess(v) > 0
- If there is an edge (v, w) in E_f s. t. push(v, w) applies
 - Push(v, w)
- Else
 - Relabel(v)

Push(v, w):
- Applies if excess(v) > 0, h(w) < h(v)
- \(q = \min(\text{excess}(v), c_f(v, w)) \)
- Add q to f(v, w)

Relabel(v):
- Applies if excess(v) > 0 and for all w s.t (v, w) in E_f, h(w) >= h(v)
- Increase h(v) by 1

Label Lists

| h=0 | | | | | | |
|-----|---|---|---|---|
| h=1 | | | | | | |
| ... | | | | | | |
| P(v) | | | | | | |

Adj-list(v)
Preflow Push: Data Structures

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), otherwise

While there is a node (other than \(t \)) with positive excess
Pick a node \(v \) with \(\text{excess}(v) > 0 \)
If there is an edge \((v, w)\) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 \(\text{Push}(v, w) \)
Else
 \(\text{Relabel}(v) \)

1. For each label, use a list to maintain nodes with \(\text{excess} > 0 \)
 Time to select a \(v \) with \(\text{excess}(v) > 0 \): \(O(1) \)
 Time to insert or delete: \(O(1) \)

2. For each \(v \), maintain all \((v, w)\) in \(E_f \) in an adjacency list
 Keep a pointer \(\text{P}(v) \) to the next edge we can push on
 If \(\text{excess}(v) = 0 \), \(\text{P}(v) \) stays on the current edge
 Move \(\text{P}(v) \) by 1 when current edge is saturated
 [Recall: If we push \((v, w)\) and saturate it, then, we cannot
 push \((v, w)\) again until \(v \) is relabeled]
 Update \(\text{P}(v) \) and the list when \(v \) is relabeled

\textbf{Push}(v, w):
Applies if \(\text{excess}(v) > 0 \), \(h(w) < h(v) \)
\(q = \min(\text{excess}(v), c_{f}(v,w)) \)
Add \(q \) to \(f(v, w) \)

\textbf{Relabel}(v):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w)\) in \(E_f \), \(h(w) >= h(v) \)
Increase \(h(v) \) by 1

Time per relabel = \(O(1) \)
Preflow Push: Data Structures

Start with labeling:
\[h(s) = n, h(t) = 0, h(v) = 0, \text{ for other } v \]

Start with preflow \(f \):
\[f(e) = c(e) \text{ for } e = (s, v), f(e) = 0, \text{ otherwise} \]

While there is a node (other than \(t \)) with positive excess:
1. Pick a node \(v \) with \(\text{excess}(v) > 0 \)
2. If there is an edge \((v, w)\) in \(E_f \) s.t. \(\text{push}(v, w) \) applies:
 - \(\text{Push}(v, w) \)
3. Else:
 - \(\text{Relabel}(v) \)

Push\((v, w)\):
- Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
- \(q = \min(\text{excess}(v), c_f(v, w)) \)
- Add \(q \) to \(f(v, w) \)

Relabel\((v)\):
- Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t. \((v, w)\) in \(E_f \), \(h(w) \geq h(v) \)
- Increase \(h(v) \) by 1

1. For each label, use a list to maintain nodes with \(\text{excess} > 0 \)
 - Time to select a \(v \) with \(\text{excess}(v) > 0 \): \(O(1) \)
 - Time to insert or delete: \(O(1) \)

2. For each \(v \), maintain all \((v, w)\) in \(E_f \) in an adjacency list
 - Keep a pointer \(P(v) \) to the next edge we can push on
 - If \(\text{excess}(v) = 0 \), \(P(v) \) stays on the current edge
 - Move \(P(v) \) by 1 when current edge is saturated

[Recall: If we \(\text{push}(v, w) \) and saturate it, then, we cannot \(\text{push}(v, w) \) again until \(v \) is relabeled]
- Update \(P(v) \) and the list when \(v \) is relabeled

Time per relabel = \(O(1) \)
Time per push = \(O(1) \)
Preflow Push: Data Structures

Start with labeling: \(h(s) = n, h(t) = 0, h(v) = 0 \), for other \(v \)
Start with preflow \(f: f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), ow

While there is a node (other than \(t \)) with positive excess
 Pick a node \(v \) with \(\text{excess}(v) > 0 \)
 If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 - \(\text{Push}(v, w) \)
 Else
 - \(\text{Relabel}(v) \)

Push(\(v, w \)):
Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
 \(q = \min(\text{excess}(v), c_f(v, w)) \)
 Add \(q \) to \(f(v, w) \)

Relabel(\(v \)):
Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t \((v, w) \in E_f \), \(h(w) >= h(v) \)
 - Increase \(h(v) \) by 1

1. For each label, use a list to maintain nodes with \(\text{excess} > 0 \)
 - Time to select a \(v \) with \(\text{excess}(v) > 0 \): \(O(1) \)
 - Time to insert or delete: \(O(1) \)
2. For each \(v \), maintain all \((v, w) \) in \(E_f \) in an adjacency list
 - Keep a pointer \(P(v) \) to the next edge we can push on
 - If \(\text{excess}(v) = 0 \), \(P(v) \) stays on the current edge
 - Move \(P(v) \) by 1 when current edge is saturated
 - [Recall: If we \(\text{push}(v, w) \) and saturate it, then, we cannot \(\text{push}(v, w) \) again until \(v \) is relabeled]
 - Update \(P(v) \) and the list when \(v \) is relabeled

Time per relabel = \(O(1) \)
Time per push = \(O(1) \)
Time to maintain list after relabeling \(v = O(deg(v)) \)
Preflow Push: Data Structures

Start with labeling:
- \(h(s) = n, h(t) = 0, h(v) = 0 \) for other \(v \)

Start with preflow \(f_0 \):
- \(f(e) = c(e) \) for \(e = (s, v) \), \(f(e) = 0 \), otherwise

While there is a node (other than \(t \)) with positive excess:
- Pick a node \(v \) with \(\text{excess}(v) > 0 \)
- If there is an edge \((v, w) \) in \(E_f \) s.t. \(\text{push}(v, w) \) applies
 - \(\text{Push}(v, w) \)
- Else
 - \(\text{Relabel}(v) \)

Push(\(v, w \)):
- Applies if \(\text{excess}(v) > 0, h(w) < h(v) \)
- \(q = \min(\text{excess}(v), c_f(v, w)) \)
- Add \(q \) to \(f(v, w) \)

Relabel(\(v \)):
- Applies if \(\text{excess}(v) > 0 \) and for all \(w \) s.t. \((v, w) \) in \(E_f \), \(h(w) \geq h(v) \)
- Increase \(h(v) \) by 1

1. For each label, use a list to maintain nodes with \(\text{excess}(v) > 0 \)
 - Time to select a \(v \) with \(\text{excess}(v) > 0 \): \(O(1) \)
 - Time to insert or delete: \(O(1) \)

2. For each \(v \), maintain all \((v, w) \) in \(E_f \) in an adjacency list
 - Keep a pointer \(P(v) \) to the next edge we can push on
 - If \(\text{excess}(v) = 0 \), \(P(v) \) stays on the current edge
 - Move \(P(v) \) by 1 when current edge is saturated
 - [Recall: If we push \((v, w) \) and saturate it, then, we cannot push \((v, w) \) again until \(v \) is relabeled]
 - Update \(P(v) \) and the list when \(v \) is relabeled

Time per relabel = \(O(1) \)
Time per push = \(O(1) \)
Time to maintain list after relabeling \(v = O(\text{deg}(v)) \)

Total running time:
= \(O(m) \times \#\text{relabels}/\text{node} + O(\#\text{pushes} + \#\text{relabels}) \)
= \(O(mn) + O(mn^2) = O(mn^2) \)
1. How many Push Ops? Relabel Ops?
 \#pushes = \(O(mn^2)\), \#relabels = \(O(n^2)\)

2. How to implement Push and Relabel Ops efficiently?
 Data structure which takes: \(O(1)\) per push, \(O(\text{deg}(v))\) to relabel \(v\) once
 Total running time = \(O(mn^2)\)
Algorithms for Max-Flow

Recall: $n = \#\text{vertices, } m = \#\text{edges in } G$

• Ford-Fulkerson: Running Time = $O(m F_{\text{max}})$

• Other efficient Ford-Fulkerson Style Algorithms:
 • Edmonds-Karp: Running Time = $O(nm^2)$
 • Capacity Scaling: Running Time = $O(m^2 \log C_{\text{max}})$

• Preflow-Push: Running Time = $O(mn^2)$