Introduction-cont
Pattern classification

Biometrics
CSE 190-d00
Lecture 2

How are people identified?

- People are identified by three basic means:
 - Something they have (identity document or token)
 - Something they know (password, PIN)
 - Something they are (human body)

Problems with Possession- or Knowledge-based Approaches

- Card may be lost, stolen or forgotten
 - Password or PIN may be forgotten or guessed by the imposters
- ~25% of people seem to write their PIN on their ATM card
- Estimates of annual identity fraud damages:
 - $56.6 billion in credit card transactions in U.S. alone in 2005*
 - 0.25% of internet transactions revenues, 0.08% of off-line revenues
 - $1 billion in fraudulent cellular phone use
 - $3 billion in ATM withdrawals
- The traditional approaches are unable to differentiate between an authorized person and an imposter

* Spectrum July, 2006

Requirements for an Ideal Biometric Identifier

1. Universality
 - Every person should have the biometric characteristic
2. Uniqueness
 - No two persons should be the same in terms of the biometric characteristic
3. Permanence
 - The biometric characteristic should be invariant over time
4. Collectability
 - The biometric characteristic should be measurable with some (practical) sensing device
5. Acceptability
 - One would want to minimize the objections of the users to the measuring/collection of the biometric

Behavioral vs Physical Traits

- Physical Characteristics
 - Iris
 - Retina
 - Vein Pattern
 - Hand Geometry
 - Face
 - Fingerprint
 - Ear shape

- Behavioral Characteristics
 - Keystroke dynamics
 - Signature dynamics
 - Walking Gait
 - Voice

Iris Recognition: Eye
Every eye has its own totally unique pattern of blood vessels.

Face Recognition: Correlation

Hand

Palm

Vein
Comparison of Biometric Techniques

Ear

Biometric Revenues by Technology, 2009

About this Class

• See Syllabus

• Special thanks to
 – Peter Belhumeur
 – Anil Jain

Applications

* There are ~500 million border crossings/year in the U.S.
As part of the enhanced procedures, most visitors traveling on visas will have two fingerprints scanned by an inkless device and a digital photograph taken. All of the data and information is then used to assist the border inspector in determining whether or not to admit the traveler. These enhanced procedures will add only seconds to the visitor’s overall processing time.

The electronic fingerprint scanner allows inspectors to check identities of visitors against those on terrorist watch lists.

*From the DHS US-VISIT web-site (c) Jain 2004

Biometrics for Personalization

- Automatic personalization of vehicle settings:
 - Seat position
 - Steering wheel position
 - Mirror positions
 - Lighting
 - Radio station preferences
 - Climate control settings

- URLs at your fingertips

What makes using biometrics difficult?
Why is Biometric Recognition Difficult?

- Large number of classes (e.g., millions of faces)
- Intra-class variability and inter-class similarity
- Segmentation
- Noisy and distorted images
- Population coverage & scalability
- System performance (error rate, speed, throughput, cost)
- Attacks on the biometric system
- Template ageing
- Non-uniqueness of biometric characteristics
- Addressing privacy concerns

Intra-class variability

Inter-class Similarity

Temporal Variations

Noisy Images

Attacks on Biometric Systems

- Spoofing a biometric trait
- Dummy finger created from a lifted impression
- Artificial skin/fingers (http://www.livingskin.com/)
Sensor Interoperability

- Sensors used during enrollment and verification may be different

Digital Biometrics optical sensor (508x480)
Veridicom capacitive sensor (300x300)
Fidelica pressure sensor (256x256)

Sensors used during enrollment and verification may be different

Performance Evaluation

- The overall performance of a biometric system is assessed in terms of its universality, accuracy, speed, and storage
- Factors like cost and ease of use also affect performance
- Biometric systems are not perfect, and can mistakenly accept an impostor as a valid user (a false match) or conversely, reject a valid individual (a false non-match)

Performance Characterization

- Impostor Distribution
- Genuine Distribution
- Threshold
- False Accept Rate (FAR) or False Match Rate
- False Reject Rate (FRR) or False Non-match Rate
- Receiver Operating Characteristic (ROC) curve
- Equal Error Rate or Crossover Rate
- Failure to Enroll (FTE)
- Failure to Acquire (FTA) or Failure to Capture

Biometrics: A Pattern Recognition System

- False accept rate (FAR): Proportion of impostors accepted
- False reject rate (FRR): Proportion of genuine users rejected
- Failure to enroll rate (FTE): portion of population that cannot be enrolled
- Failure to acquire rate (FTA): portion of population that cannot be verified
Error Rates

False Match (False Accept): Mistaking biometric measurements from two different persons to be from the same person.
False Non-match (False reject): Mistaking two biometric measurements from the same person to be from two different persons.

Error vs Threshold

FAR: False accept rate
FRR: False reject rate

Evaluation Protocol

• Define a protocol to test the system, select the data and measure the performance; performance depends on the test set.
• Evaluations should be conducted by an independent organization (that is not involved in the design of the system).
• Test on biometric data previously unseen by the system.
• Size of the data-set and representative examples of the data set should be provided for tuning algorithmic parameters.
• Face, Fingerprint and Voice systems have undergone the most study and testing.

"State-of-the-art" Error Rates

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Parameters</th>
<th>False Reject Rate</th>
<th>False Accept Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fingerprint</td>
<td>FVC (2002) 20 years (average age)</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>FVC (2004) Deliberate perturbations</td>
<td>2.07%</td>
<td>2.07%</td>
</tr>
<tr>
<td>Face</td>
<td>FRVT (2002) Varied lighting, outdoor/indoor</td>
<td>10%</td>
<td>1%</td>
</tr>
<tr>
<td>Voice</td>
<td>NIST (2000) Text Independent</td>
<td>10-20%</td>
<td>2-5%</td>
</tr>
</tbody>
</table>

At NY airports, an average of ~300,000 passengers pass through daily. If all of these used biometric-authenticated smart cards for identification, there would be 600 falsely rejected (and inconvenienced) passengers per day for fingerprints, 30,000 for face and 45,000 for voice. Similar numbers can be computed for false accepts.
An Example

- “Sorting incoming Fish on a conveyor according to species using optical sensing”

 Sea bass
 Salmon

- Adopt the lightness and add the width of the fish

 Fish

 \[x^T = [x_1, x_2] \]

 Lightness Width