Lecture 16

Parallel Sorting

MPI Datatypes
Today’s lecture

• MPI Derived Datatypes

• Parallel Sorting
MPI Datatypes
Data types

• MPI messages sources need not be contiguous 1-dimensional arrays
• The element types need to be restricted to built in types like float, int, char
• MPI provides a data type mechanism to enable us to work with a richer set of types
 ‣ structs
 ‣ “every k-th element of a vector”
Data types in MPI

• MPI encodes the meaning of user-defined types with a special set of functions
• The type system is limited
• No support for
 ‣ pointer-based data structures
 ‣ callbacks
The basics of MPI data types

• *Create* an MPI_Datatype object

 MPI_Datatype new_type_t
 MPI_Type_vector(nblks, blkLen, stride, elt_t, &new_type_t)

• *Commit* the data type, allowing MPI to take some internal actions that may improve performance

 MPI_Type_commit(&new_type_t)

• *Communicate* the data using the committed type

 MPI_Send(ptr, n, new_type_t, dest, tag, comm)
Derived types

• MPI provides derived data types, e.g. `struct`
• We need to describe
 ‣ The number of elements in the `struct`
 ‣ The type of each element
• From this information we can determine the displacement from the start of the `struct`, where each element begins
 \[((τ_0,d_0), (τ_1,d_1),..., (τ_{n-1},d_{n-1}))\]
• Members may be built-in or previously defined MPI types, but not pointers
An example of a derived datatype

• Consider

\texttt{struct x \{ float a; float b; int n; \}}

• There are three members
 ‣ The first member (a) has type \texttt{MPI_FLOAT}
 ‣ The second member (b) has type \texttt{MPI_FLOAT}
 ‣ The third member (c) has type \texttt{MPI_INT}

• There are two block
 ‣ The first block contains 2 \texttt{* MPI_FLOAT}
 ‣ The second block contains 1 \texttt{* MPI_INT}
The API

MPI_Type_struct(int count, int block_lengths[],
 MPI_Aint displacements[],
 MPI_Datatype typelist[],
 MPI_Datatype* new_mpi_t);

count: number of members in the struct
block_lengths[]: number of entries in each member
displacements[]: byte displacement of each block
typelist[]: type of each member
Building a struct type

```c
MPI_Type_struct(int count,
                int block_lengths[],
                MPI_Aint displacements[],
                MPI_Datatype typelist[],
                MPI_Datatype* new_mpi_t);
```

Consider `struct x { float a; float b; int n; }`
Count = 2
block_lengths[0] = { 2, 1 }
typelist[] = `{MPI_FLOAT, MPI_INT}`
displacements[0] = 0
displacements[1] = ?
Computing the displacements

• Since component types may be previously defined types, we need to have a way of computing a block’s size

```c
int MPI_Type_extent(
    MPI_Datatype datatype, MPI_Aint *extent )

typedef struct { float a; float b; int n} Ts;

MPI_Type_extent(MPI_FLOAT,&extent);

displacements[0] = 0

displacements[1] = 2 * extent;
```
An alternative to types

• We can copy the data into a buffer
• Packing a heterogeneous struct ourselves can lead to surprises if we are moving across machine boundaries

 \[
 \text{struct \{int } x; \text{ float } y; \text{ double } z;\}
 \]

• MPI provides functions to support more elaborate types, and to support message packing and unpacking, but won’t discuss these
Specifying a Vector type

- The addresses in a column of a 2D array are not contiguous

```c
MPI_Type_vector(
    int count=N, int blockLen=1,
    int stride=N,
    MPI_Datatype MPI_INT, MPI_Datatype &vec_t);
```
Copying a column

if (myid == 0)
 MPI_Send (&A[0][1], 1, vec_t, 1, 0, MPI_COMM_WORLD);
else
 MPI_Recv (&A,
 1,
 vec_t,
 0,
 0,
 MPI_COMM_WORLD,
 &status);
Structural equivalence

• The recipient has flexibility to store incoming values according to a locally defined rule

• Process A can send a block of data in row major order to Process B, which can receive the data in column major order into a local data structure

• The only constraint is that the number of sent and received elements are the same
Receiving data contiguously

- Takes advantage of structural equivalence

If (myid == 0)

 MPI_Send(A, 1, vec_t, 1, 0, MPI_COMM_WORLD);

else

 MPI_Recv(A, N, MPI_INT, 0, 0, MPI_COMM_WORLD,
 &status);

©2010 Scott B. Baden / CSE 160 / Winter 2010
An example using structural equivalence

- Copy a horizontal plane of a 3D array into a 2D buffer

```c
MPI_Type_vector(n, n, n*n, MPI_INT, &horiz_t);
...

MPI_Send(buff, 1, horiz_t, dest, tag, comm)

MPI_Recv(buff, n*n, MPI_INT, src, tag, comm, &status);
```
A more elaborate example

Transmit a 3×2 subblock of an $N \times N$ array

```
MPI_Type_vector(
    int count=2,
    int blockLen=3,
    int stride=N,
    MPI_Datatype MPI_DOUBLE,
    MPI_Datatype &vec_t);
```
An example datatype problem

- Reminiscent of block cyclic distributions
- Let’s collect a block of 2 elements, that skips 4 elements between each block

```c
MPI_Type_vector(N, 2, 6, MPI_INT, &horiz_t);
```
Another example datatype problem

• What does this sequence of calls perform?

```c
MPI_Type_vector(n,       // blocks
                n,        // blockLen
                n*n,      // stride
                MPI_INT,  &horiz_t);
```

```c
MPI_Send(buff, 1, horiz_t, dest, tag, comm)
MPI_Recv(buff, n*n, MPI_INT, src, tag, comm, &status);
```

```c
MPI_Type_vector(
    int count, int blockLen, int stride,
    MPI_Datatype  TYPE,
    MPI_Datatype &my_type);
```
Parallel Sorting

• Sorting is fundamental algorithm in data processing
 ‣ Given an unordered set of keys $x_0, x_1, \ldots, x_{N-1}$
 ‣ Return the keys in sorted order
• The keys may be strings, numbers, or any object for which the relations $>$, $<$, and $=$ hold
• We’ll consider in-memory sorting of integer keys
 ‣ Bucket sort
 ‣ Sample sort
 ‣ Bitonic sort
• In practice, we sort on external media, i.e. disk
 ‣ See: http://sortbenchmark.org
 ‣ 100 Terabytes in 173 minutes (O’Malley and Murthy)
 3452 x (2 Quadcore Xeons, 8 GB memory, 4 SATA)
Rank sorting

• Compute the rank of each input value
• Move each value in sorted position according to its rank
• Not practical on real hardware

forall i=0:n-1, j=0:n-1
 if (x[i] > x[j]) then rank[i] += 1 end if
forall i=0:n-1
 y[rank[i]] = x[i]
In search of a fast and practical sort

- Rank sorting is impractical on real hardware
- Let’s borrow the concept: compute the processor owner for each key
- Communicate data in sorted order in one step
- But how do we know which processor is the owner?
- Depends on the distribution of keys
Bucket sort

- Divide key space into equal subranges and associate a bucket with each subrange
- Unsorted input data distributed evenly over processors
- Each processor maintains p local buckets
 - Assigns each key to a local bucket: \[\left\lfloor \frac{p \times \text{key}}{(K_{\text{max}} - 1)} \right\rfloor \]
 - Routes the buckets to the correct owner (each local bucket has \(\sim \frac{n}{p^2} \) elements)
 - Sorts all incoming data into a single bucket
Running time

- Assume that the keys are distributed uniformly over 0 to \(K_{\text{max}} - 1 \)
- Local bucket assignment: \(O(n/p) \)
- Route each local bucket to the correct owner
- All to all: \(O(n) \)
- Local sorting: \(O(n/p) \)
 - Radix sort
Scaling study

- IBM SP3 system: 16-way servers w/ Power 3 CPUs
- Weak scaling: 1M points per processor

Local sort: quicksort
$O(n/p \log(n/p))$

All-to-allv
$O(n)$
Worst case behavior

• What is the worst case?
• Mapping of keys to processors based on knowledge of K_{max}
• If keys are in range $[0,Q-1]$ …
 … processor k has keys in the range $[k*Q/P : (k+1)*Q/P]$
• For $Q=2^{30}$, $P=64$, each processor gets $2^{24} = 16$ M elements
• What if keys $\in [0, 2^{24} -1] \subset [0, 2^{30} -1]$?
• For a non-uniform distribution, we need more information to balance keys (and communication) over the processors
• Sample sort is an algorithm that collects such information and improves worst case behavior
The idea behind sample sort

• Estimate the distribution of the global key range over the p processors
• Sample the keys to determine a set of $p-1$ splitters that partition the key space into p disjoint intervals [sample size parameter: s]
• Each interval is assigned a unique processor
• Once each processor knows the splitters, it can distribute its keys to the others accordingly
• Processors sort incoming keys
Alltoally used in sample sort

Performance

- Assuming $n \geq p^3$ …
- $T_p = O((n/p) \log n)$
- If $s = p$, each processor will merge not more than $2n/p + n/s - p$ elements
- If $s > p$, each processor will merge not more than $(3/2)(n/p) - (n/(ps)) + 1 + d$ elements
- Duplicates d do not impact performance unless $d = \Theta(n/p)$
- Tradeoff: increasing s …
 - Spreads the final distribution more evenly over the processors
 - Increases the cost of determining the splitters