Lecture 9

Irregular applications
Particle Methods
In class exercises
Announcements

- **Testing time – final choice**
 - 7pm to 9pm
Today’s lecture

• Advanced OpenMP Scheduling
• Load Balancing
• Code design
The N-body problem
The N-body problem

- Compute trajectories of a system of N bodies often called *particles*, moving under mutual influence
 - The Greek word for particle: *somati'dion* = “little body”
 - N can range from thousands to millions
 - No general analytic (exact) solution when N > 2
 - Numerical simulations required

- A *force law* governs the way the particles interact
 - We may not need to perform all O(N^2) force computations
 - Introduces non-uniformity due to uneven distributions
Discretization

- Because we cannot solve the problem analytically we must solve it numerically
- Particles move continuously through space and time
- On a computer we represent continuous values using a discrete approximation
The calculation

• Evaluate forces at discrete points in time, called timesteps Δt, $2\Delta t$, $3\Delta t$, …
 ‣ Δt is called the *time discretization* or *discrete time step* (a parameter)

• “Push” the bodies according to Newton’s third law

$F = ma = m \frac{du}{dt}$

```plaintext
while (current time < end time)
  forall bodies $i \in 1:N$
    compute force $F_i$ induced by all bodies $j \in 1:N$
    update position $x_i$ by $F_i \Delta t$ for all $i$
  current time += $\Delta t$
end
```

©2010 Scott B. Baden / CSE 160 / Winter 2010
Selecting Δt

- We approximate the velocity of a particle by the tangent to the particle’s trajectory.
- Since we compute velocities at discrete points in space and time, we approximate the true trajectory by a straight line.
- So long as Δt is small enough, the resultant error is reasonable.
- If not then we might “jump” to another trajectory: this is an error.

Particle A’s trajectory

Particle B’s trajectory
Computing the force

• The running time of the computation is dominated by the force computation, so we ignore the push phase.

• The simplest approach is to use the direct method, with a running time of $O(N^2)$

\[
\text{Force on particle } i = \sum_{j=0:N-1} F(x_i, x_j)
\]

• $F(\)$ is the force law.

• One example is the gravitational force law

\[
G \frac{m_i \; m_j}{r_{ij}^2} \text{ where } r_{ij} = \text{distance}(x_i, x_j)
\]

• G is the gravitational constant.

• Let’s consider a more highly localized force.
Localized Van Der Waals Force

\[
F(r) = C \left(2 - \frac{1}{30r}\right) \quad r < \delta \\
C \left(\frac{1}{30r}\right)^5 \quad r \geq \delta,
\]

\[C = 0.1\]
Taking advantage of locality

- We don’t compute all $O(N^2)$ interactions
- To speed up the search for nearby particles, store in a mesh (Hockney & Eastwood, 1981)
- Spatial sort $(x,y) \rightarrow \text{Bin } (x-x_0)*m,(y-y_0)*n)$
- Nearest neighbor interactions
Implementation

```cpp
#include <list>

typedef struct {
    double x, y, s;
    double u, v, u_o, v_o;
} particle;
list<particle> **World;

#pragma omp parallel for schedule(dynamic, chunk)
for i = 0 : N-1
    for j = 0 : N-1
        for x = -1 : +1
            for y = -1 : +1
                CalcForce(World[i][j], World[i+x][j+y]);
```
Today’s lecture

• **Advanced** OpenMP Scheduling
• Load Balancing
• Code design
Why do we look at numerically intensive applications?

- Highly repetitive computations are prime candidates for parallel implementation
- Tight loop nests are the “low hanging fruit”
- Many real world applications
 - Data Mining
 - Image processing
 - Simulations – financial modeling, weather, biomedical

- We can classify applications according to Patterns of communication and computation that persist over time and across implementations

 Phillip Colella’s 7 Dwarfs

Courtesy of Randy Bank
Classifying the application domains

- Structured grids
 - Image processing, simulations
- Dense linear algebra:
 - Matrix multiply, Gaussian elimination, Data mining
- N-body methods
- Sparse linear algebra
 - In a sparse matrix, we take advantage of knowledge about the locations of non-zeros, improving some aspect of performance
 - Used widely
- Unstructured Grids
- Spectral methods (FFT)
- Monte Carlo

Courtesy of Randy Bank
Application-specific knowledge is important

• There currently exists no tool that can turn a serial program into an efficient parallel program
 … for all applications … all of the time … on all hardware

• The more we know about the application …
 … specific problem … math/physics … initial data …
 … context for analyzing the output …
 … the more we can improve productivity

• Issues
 ‣ Data motion and locality
 ‣ Load balancing
 ‣ Serial sections
Example sparse matrix

- 1M x 1M submatrix of a web connectivity graph constructed from an archive at Stanford Web Base
- 3 non-zeroes/row
 - Dense: \(2^{20} \times 2^{20} = 2^{40}\)
 \[= 1024\text{ Gwords}\]
 - Sparse: \((3/2^{20}) \times 2^{40}\)
 \[= 3\text{ Mwords}\]
 - Sparse representation saves a factor of 1 million in storage

Courtesy of Jim Demmel
Sparse Matrix Linear Algebra

- Sparse matrix-vector multiply
 \[y[i] += A[i,j] \times x[j] \]
- Many formats, common one is Compressed Sparse Row (CSR)
Sparse matrix vector multiply

// y[i] += A[i,j] × x[j]
#pragma parallel for schedule (dynamic,chunk)
for i = 0 : N-1 // rows
 i0 = ptr[i]
 i1 = ptr[i+1] – 1
 for j = i0 : i1 // cols
 y[ind[j]] +=
 val[j] * x[ind[j]]
 end j
end i
In class exercises
Questions

1. Time constrained scaling
2. Tree Summation
3. Synchronization
4. Iteration to thread mapping
5. Printing the letters of the alphabet
6. Removing data dependencies
7. Dependence analysis
8. Performance
1. Time constrained scaling

- Sum N numbers on P processors
- Let \(N >> P \)
- Determine the largest problem that can be solved in time \(T=10^4 \) time units on 512 processors
- Let time to perform one addition = 1 time unit
- Let \(\beta = \) time to add a value inside a critical section
Performance model

• Local additions: N/P - 1
• Reduction: $\beta (\log P)$
• Since $N >> P$
 \[T(N,P) \sim (N/P) + \beta (\log P) \]
• Determine the largest problem that can be solved in time $T=10^4$ time units on $P=512$ processors, $\beta = 1000$ time units
• Constraint: $T(512,N) \leq 10^4$
\[
\Rightarrow (N/512) + 1000 (\log 512) = (N/512) + 1000*(9) \leq 10^4
\Rightarrow N \leq 5 \times 10^5 \text{ (approximately)}
\]
2. Tree Summation

• Input: an array \(x[] \), length \(N \gg P \)
• Output: Sum of the elements of \(x[] \)
• Goal: Compute the sum in \(\lg P \) time

 \[
 \text{sum} = 0; \\
 \text{for } i=0 \text{ to } N-1 \\
 \text{sum} += x[i]
 \]

• Assume \(P \) is a power of 2, \(K = \lg P \)
• Starter code

 for \(m = 0 \) to \(K-1 \) {

 }

©2010 Scott B. Baden / CSE 160 / Winter 2010
Visualizing the Summation
3. Synchronization

List all possible outputs that result from running the following

```c++
#pragma omp parallel for shared(j,k)
for ( int i=0, j=0, k=0; i< 5; i++)
    j = j + 10;
    k = j + 10;
}
cout << “k = “ << k << endl;
```
4. Iteration to thread mapping

```c
#pragma omp parallel shared(N, iters) private(i)
#pragma omp for
for (i = 0; i < N; i++)
    iters[i] = omp_get_thread_num();
```

N = 9, # of openMP threads = 3
0 0 0 1 1 1 2 2 2

N = 16, # of openMP threads = 4, schedule(static,2)
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

N =9: 0 0 1 1 2 2 0 0 1

N = 16, # of openMP threads = 4, schedule(dyanmic,2)
3 3 0 0 1 1 2 2 3 3 3 3 3 3 3 3
2 2 3 3 0 0 1 1 2 2 2 2 2 2 2 2
5. Printing the letters of the alphabet

#pragma omp parallel private(i){
 int LettersPerThread = 26 / omp_get_num_threads();
 int ThisThread = omp_get_thread_num();
 int Start = 'a' + ThisThread*LettersPerThread;
 int End = 'a' + (ThisThreadNum+1)*LettersPerThread;
 for (i=Start; i<End; i++)
 printf ("%c", i);
}

©2010 Scott B. Baden / CSE 160 / Winter 2010
6. Removing data dependencies

- B initially: 0 1 2 3 4 5 6 7
- B on 1 thread: 0 9 10 11 12 21 22 23
- B on 2 threads: 0 17 18 19 12 13 14 15
- How can we split into 2 loops so that each loop parallelizes, the result it correct?

```plaintext
for i = 1 to N
    B[i] += B[N-i];
```
Splitting a loop

- For iterations $i=N/2+1$ to N, $B[200-i]$ reference newly computed data
- All others reference “old” data
- B initially: 0 1 2 3 4 5 6 7
- Correct result: 0 9 10 11 12 21 22 23

\[
\begin{align*}
\text{for } i &= 1 \text{ to } N \\
B[i] &=+ B[N-i] \\
\text{for } i &= N/2+1 \text{ to } N \\
B[i] &=+ B[N-i]
\end{align*}
\]
7. Loop Dependence Analysis

• Can we run parallelize these with openmp?

1. for i = 1 to N
 \[A[i] = A[i] + B[i-1]; \]

2. for i = 1 to N
 \[A[i+1] = A[i] + 1; \]

3. \[A[0] = 0; \]
 for i = 1 to N-1
 \[A[i] = A[i-1] + i; \]

4. for i = 1 to N{
 A[i] = B[i];
 C[i] = A[i] + B[i];
 E[i] = C[i+1];
}
Nested loop dependence analysis

• Can we parallelize the inner loops as shown?

LOOP #1
for j = 0 to n-1
 for i = 0 to n-1
 A[i, j+1] = A[i, j];

LOOP #2
for j = 0 to n-1
 for i = 0 to n-1
 A[i, j+1] = A[i, j];
8. Performance

- You observe the following running times for a parallel program running a fixed workload N
- Assume that the only losses are due to serial sections
- What is the speedup and efficiency on 8 processors?
- What will the running time be on 4 processors?
- What is the maximum possible speedup on an infinite number of processors?
- What fraction of the total running time on 1 processor corresponds to the serial section?
- What fraction of the total running time on 2 processors corresponds to the serial section?

<table>
<thead>
<tr>
<th>NT</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>2</td>
<td>6000</td>
</tr>
<tr>
<td>8</td>
<td>3000</td>
</tr>
</tbody>
</table>