Lecture 8

Advanced Scheduling & Applications
Announcements

• Use ieng6-204 for performance tuning and benchmarking
• Use ieng6-203 for development
• We will set aside blocks of “development time” where there will be no long running jobs on the machine
 ‣ Take the surveymonkey
Today’s lecture

• A few words on code design
• Advanced Scheduling
• Load Balancing
Parallel control flow

• High overhead associated with spawning and joining threads

```c
for (it= 0; it<nIters; it++) {
    #pragma omp parallel shared( ... ) private(i,j)
    #pragma omp for
    {
        for (int i=1; i<=nx; i++)
            for (int j=1; j<=ny; j++)
                Un[i,j] = (U[i-1, j] + U[i+1,j] + ... ) / 4;

        U ↔Un;
    }
}
```
Parallel control flow

• Lower overhead if we put the parallel section outside the iteration loop

```c
#pragma omp parallel shared( … ) private(i,j)
for (it= 0; it<nIters; it++) {
#pragma omp for
{
    for (int i=1; i<=nx; i++)
        for (int j=1; j<=ny; j++)
            Un[i,j] = (U[i-1, j] + U[i+1,j] + ... ) / 4;

    U ← Un;
}
}```
Advanced Scheduling in OpenMP
Workload Decomposition

- How to split up the work over processors?
  - Partitioning
  - Processor mapping
  - Dynamic or static?
  - Uniform or non-uniform
- Data parallelism
- Task parallelism
Data parallelism: iteration mapping

• By default, OpenMP maps iterations to threads with a static uniform mapping

• Split N iterations into NT pieces as evenly as possible
  
  \[ \text{Thread } K \text{ gets iterations } K \times \frac{N}{NT} \text{ to } (K+1) \times \frac{N}{NT} - 1 \]

• What if the iterations have different running times?

  \[
  \text{for (int } i=0; \ i<n) \\
  \text{ work(}i\text{);}
  \]

• Consider the Mandelbrot set computation
Motivating application

- Mandelbrot set computation
- Named after B. Mandelbrot
The Mandelbrot set

• For which points $c$ in the complex plane does the following iteration remain bounded?
  \[ z_{k+1} = z_k^2 + c \]
  $c$ is a complex number, $z_0 = 0$

• When $c=0$, all points lay within a unit disk: $|z| \leq 1$

• If $|z| \geq 2$, the iteration is guaranteed to diverge to $\infty$

• Plot the rate at which points in a given region diverge

• Stop the iterations when $z_{k+1} \geq 2$ or $k$ reaches some limit

• Plot $k$ at each position
A quick review of complex numbers

- Define $i = \sqrt{-1}$
- Complex number $z = x + iy$
  - $x$ is called the real part
  - $y$ is called the imaginary part
- We associate each complex number with a point in the $x$-$y$ plane
- Magnitude of a complex number same as vector length: $|z| = \sqrt{x^2 + y^2}$
A load balancing problem

• Some points iterate longer than others
• Uniform decomposition: uneven workload distribution
• We have a load imbalance

```c
#pragma omp parallel for
for i = 0 to n-1
 for j = 0 to n-1
 z_0 = Complex (x[i], y[i])
 while (|z_k| < 2 or k > MAXITER)
 z_k++ += z_k^2 + c
 Output(i,j) = k
```
Load balancing efficiency

• If we ignore serial sections and other overheads, then we may express load imbalance in terms of a load balancing efficiency metric.

• Let each processor $i$ complete its assigned work in time $T_i$.

• Thus, the running time $T_P = \text{MAX} (T_i)$.

• Define $\bar{T} = \sum_i T_i$.

• We define the load balancing efficiency $\eta = \frac{\bar{T}}{PT_P}$.

• Ideally $\eta = 1.0$. 
First approach: chunking

• Divide into rows in bundles of CHUNK consecutive rows
• Processor k gets chunks 0, NT, 2*NT, …
• Also called round robin or block cyclic

```c
#pragma omp parallel for schedule(static, CHUNK)
for i = 0 to n-1
 for j = 0 to n-1
 z_0 = Complex (x[i], y[i])
 while (|z_k| < 2 or k > MAXITER)
 z_k++ += z_k^2 + c
 Output(i, j) = k
```
Data Distribution

- OpenMP implementations may not support nested parallelism: 2D decompositions

```c
#pragma omp parallel for schedule(…)
for i = 0 to n-1
#pragma for schedule(…)
for j = 0 to n-1
 z₀ = Complex (x[i],y[i])
 while (|zₖ|< 2 or k > MAXITER)
 zₖ₊₊ += zₖ² + c
 Output(i,j) = kₙ
```

© 2010 Scott B. Baden / CSE 160 / Winter 2011
Dynamic scheduling with OpenMP

• Iterations mapped at run time
• Also called processor *self-scheduling*
• *What are the tradeoffs?*

```c
#pragma omp parallel private(i) shared(n)
{
 #pragma omp for schedule(dynamic, CHUNK)
 for(i=0; i < n; i++)
 work(i);
}
```
Processor self-scheduling

- Each thread samples a unique set of indices, will change from run to run
- Sample a shared counter or work queue to obtain work
- User tunes work granularity (chunk size) to trade off the overhead of sampling the queue against increased load imbalance

Increasing granularity $\rightarrow$ Running time

High overheads $\rightarrow$ Load imbalance

© 2010 Scott B. Baden / CSE 160 / Winter 2011
How does self scheduling work?

while (getNextChunk(&mymin, &mymax))
    for i = mymin to mymax
        work(i);
    end for
end while

SelfScheduler S(n,P,CSize);
Boolean getNextChunk(int * mymin, int * mymax){

    #pragma omp parallel
    #pragma omp critical
    {
        k = S.counter += S.ChunkSize;
    }
    mymin = k;
    mymax = k + S.chunkSize;
}
Granularity tradeoff

• The cost of load balancing goes up as we improve the load imbalance

• The finest granularity: each point a separate task

• Coarsest granularity: one block per processor

• What is the tradeoff?
Simulations

• Let’s simulate the workload distribution
• Assumptions:
  ‣ Work distribution is instantaneous (zero cost)
  ‣ Running time time is proportional to # iterations $k$
• Vary the chunk size $b$
• Optimal running time on 16 cores: 3044
Limits to performance

• What happened when the chunk size was too large?
• Consider P=8
• The running times on the processors:
  4771  5855  6018  6101
  7129  6390  6470  5964
• The optimal running time is 6088
Guided self-scheduling

- We need many more pieces of work than processors (say 10 times) to do a good job of load balancing.
- But the cost of load balancing goes up as we improve the load imbalance.
- Adjust or “guide” task granularity in proportion to the amount of remaining work.
- For example, \( g = \frac{N_{\text{remain}}}{10P} \).
- When there’s lots of work to do, we hand out large chunks. Toward the end, we hand out smaller chunks.
The N-body problem
The N-body problem

• Compute trajectories of a system of N bodies often called particles, moving under mutual influence
  ‣ The Greek word for particle: somati‘dion = “little body”
  ‣ N can range from thousands to millions
  ‣ No general analytic (exact) solution when N > 2
  ‣ Numerical simulations required

• A force law governs the way the particles interact
  ‣ We may not need to perform all O(N²) force computations
  ‣ Introduces non-uniformity due to uneven distributions
Discretization

• Because we cannot solve the problem analytically we must solve it numerically
• Particles move continuously through space and time
• On a computer we represent continuous values using a discrete approximation
The calculation

- Evaluate forces at discrete points in time, called timesteps $\Delta t$, $2\Delta t$, $3\Delta t$, …
  - $\Delta t$ is called the *time discretization* or *discrete time step* (a parameter)
- “Push” the bodies according to Newton’s third law
  \[
  F = ma = m \frac{du}{dt}
  \]

```plaintext
while (current time < end time)
 forall bodies $i \in 1:N$
 compute force F_i induced by all bodies $j \in 1:N$
 update position x_i by $F_i \Delta t$ forall i
 current time += Δt
end
```
Selecting $\Delta t$

- We approximate the velocity of a particle by the tangent to the particle’s trajectory.
- Since we compute velocities at discrete points in space and time, we approximate the true trajectory by a straight line.
- So long as $\Delta t$ is small enough, the resultant error is reasonable.
- If not then we might “jump” to another trajectory: this is an error.

Particle A’s trajectory

Particle B’s trajectory
Computing the force

• The running time of the computation is dominated by the force computation, so we ignore the push phase.

• The simplest approach is to use the direct method, with a running time of $O(N^2)$

  Force on particle $i = \sum_{j=0}^{N-1} F(x_i, x_j)$

• $F(\ )$ is the force law.

• One example is the gravitational force law

  $G \frac{m_i \ m_j}{r_{ij}^2}$ where $r_{ij} = \text{dist}(x_i, x_j)$

  $G$ is the gravitational constant.