Lecture 7

OpenMP:
Reduction, Synchronization,
Scheduling & Applications
Announcements

• Section and Lecture will be switched on Thursday and Friday
 • Thursday: section and Q2
 • Friday: Lecture
Today’s lecture

• Reduction, Synchronization, Scheduling & Applications

• Introduction to OpenMP
OpenMP under the hood

• A program begins life as a single “boss” thread
• When the boss encounters a parallel construct, it creates a team of worker threads
• The lexically enclosed program statements execute in parallel by all team members
• When we reach the end of the scope…
 • The team of threads synchronize and are dissolved; they enter a wait state
 • Only the master thread continues,
• Thread teams can be created and dissolved many times during program execution

www.ncsa.uiuc.edu/UserInfo/Resources/Software/Intel Compilers/10.0/main_cls/mergedProjects/optaps_cls/whskin_homepage.htm

• A clever compiler can avoid so many thread creations and joins
Matrix Vector Multiplication

$$
\begin{array}{cccc}
 a_{00} & a_{01} & \cdots & a_{0,n-1} \\
 a_{10} & a_{11} & \cdots & a_{1,n-1} \\
 \vdots & \vdots & \cdots & \vdots \\
 a_{i0} & a_{i1} & \cdots & a_{i,n-1} \\
 \vdots & \vdots & \cdots & \vdots \\
 a_{m-1,0} & a_{m-1,1} & \cdots & a_{m-1,n-1} \\
\end{array}
\begin{array}{c}
 x_0 \\
 x_1 \\
 \vdots \\
 x_{n-1} \\
\end{array}
=
\begin{array}{c}
 y_0 \\
 y_1 \\
 \vdots \\
 y_{m-1} \\
\end{array}
$$

$$y_i = a_{i0}x_0 + a_{i1}x_1 + \cdots + a_{i,n-1}x_{n-1}$$
Matrix Vector Multiplication in OpenMP

• We can query the number of threads in OpenMP, within a parallel region

```c
#ifdef __OPENMP
#include <omp.h>
#endif

int NT = -99999997;

#pragma omp parallel
{
  #pragma omp single
  // Only one thread needs to query the # threads
  NT = omp_get_num_threads();
}
```
Initialization

- We allocate and initialize storage outside a parallel region

```c
double **A;
A = (double**) malloc(sizeof(double*)*N + sizeof(double)*N*N);
assert(A);

for(j=0;j<N;j++) A[j] = (double*)(A+N) + j*N;

for (j=0; j<N; j++)
    for (i=0; i<N; i++)
        A[i][j] = 1.0 / (double) (i+j-1);
```
double **A, *x, *y; // GLOBAL

// Start timer
 double t0 = -getTime();

#pragma omp parallel shared(A,x,N)
 for (int k = 0; k<reps; k++)
#pragma omp for
 for (i=0; i<N; i++){
 y[i] = 0.0;
 for (j=0; j<N; j++)
 y[i] += A[i][j] * x[j];
 }

// Take time
 t0 += getTime();
Compare with pthreads coding

• “Outline” the computation into a thread procedure
• Spawn and join threads
• Partition the rows of the matrix over processors
Thread management

• The boss thread also takes on a worker’s task

```c
for(int64_t t=1;t<NT;t++)
    assert(!pthread_create(&thrds[t], NULL, matvec_thr, ...));
int zero = 0;

matvec_thr(reinterpret_cast<void *>(zero));

// Join the threads
for(int64_t t=1;t<NT;t++){
    assert(!pthread_join(thrds[t], NULL));
}
```
Data partitioning

• Partitioning is the process of splitting up the computation: how we map iterations to threads
• By default, OpenMP partitions the outermost loop only, into intervals
• Each processor gets N/NT elements
• What if $N \% NT \approx 0$?
 ‣ Let $q = N \% NT$
 ‣ First q processors get $\lceil N/NT \rceil$ elements, others get $\lfloor N/NT \rfloor$ elements

© 2010 Scott B. Baden / CSE 160 / Winter 2011
The thread function

```c
int chunk= N/N, q = N%NT;
int low = (TID < q ) ? TID * (chunk+1) \n    : rem*(chunk+1)+(TID-rem)
*chunk;
int    hi = (TID < q ) ? low + chunk+1
    : low+chunk;
// Repeat several times to get reasonable timings
for (int k = 0; k<reps; k++)
    for (int i=low; i<hi; i++){
        y[i] = 0.0;
        for (int jj=0; j<N; j++)
            y[i] += A[i][j] * x[j];
```
#pragma omp parallel // Begin a parallel construct
{
 // form a team
 // Each team member executes the same code
 #pragma omp sections // Begin work sharing
 {
 #pragma omp section // A unit of work
 {functionA(..);}
 #pragma omp section // Another unit
 {functionB(..);}
 } // Wait until both units complete
}
// End of Parallel Construct; disband team

// continue serial execution
Critical Sections

- Only one thread at a time may run the code in a critical section
- Uses mutual exclusion to implement critical sections

```c
#pragma omp parallel // Begin a parallel construct
{
    #pragma omp sections // Begin worksharing
    {
        #pragma omp critical // Critical section
        {x = x + 1}
        #pragma omp critical // Another critical section
        {x = x + 1}
        ... // More Replicated Code
        #pragma omp barrier // Wait for all members to arrive
        } // Wait until both units of work complete
    }
}
```
Variable scoping

• Any variables declared outside a parallel region are shared by all threads
• Variables declared inside the region are private
• Used `shared` and `private` declarations to override the defaults

\[
double c = 1 / 6.0, h = 1.0, c2 = h * h;
\]
\[
\text{for (it= 0; it<nIters; it++) \{}
\]
\[
\#pragma omp parallel shared(U,Un,b,nx,ny,nz,c2,c) private(i,j,k)
\]
\[
\#pragma omp for
\]
\[
\text{for (int i=1; i<=nx; i++)}
\]
\[
\text{for (int j=1; j<=ny; j++)}
\]
\[
\text{for (int k=1; k<=nz+1; k++)}
\]
\[
Un[i][j][k] = c * (U[i-1][j][k] + U[i+1][j][k] + U[i][j-1][k] + U[i][j+1][k] + U[i][j][k-1] + U[i][j][k+1] - c2*b[i-1][j-1][k-1]);
\]
\[
U \leftrightarrow Un;
\]
\[
\}
\]
Reductions in OpenMP

- OpenMP uses a local accumulator, which it then accumulates globally after the loop finishes.

```c
#pragma omp parallel reduction(+:sum)
  for (int i=0; i< N-1; i++)
    sum += x[i];

i0 = $TID*n/NT , i1 = i0 + n / NT;
for (i=i0, localSum=0; i < i1; i++)
  localSum += x[i];

All threads accumulate localSum into Global Sum
```
double c = 1/6.0, err=0;
#pragma omp parallel shared(U,B,c)
#pragma omp for reduction(+:err)
for (int i=1; i<=nx; i++)
 for (int j=1; j<=ny; j++)
 for (int k=1; k<=nz; k++){
 double du = c * (U[i-1][j][k] + U[i+1][j][k] + U[i][j-1][k] +
 U[i][j+1][k] + U[i][j][k-1] + U[i][j][k+1] - 6.0*B[i-1][j-1][k-1]);
 double = B[i-1][j-1][k-1] - du;
 err = err + r*r;
 }
double resid = sqrt(err)/(double)((nx+2)*(ny+2)*(nz+2));
Dealing with Data Dependences
Loop carried dependences

- OpenMP will dutifully parallelize a loop when you tell it to, even if doing so “breaks” the correctness of the code

\[
\begin{align*}
\text{int}^* \text{ fib} &= \text{new} \text{ int}[N]; \\
\text{fib}[0] &= \text{fib}[1] = 1; \\
\text{#pragma omp parallel for num_threads(2)} \\
&\text{for (i=2; i<N; i++)} \\
&\quad \text{fib}[i] = \text{fib}[i-1]+ \text{fib}[i-2];
\end{align*}
\]

- Sometimes we can restructure an algorithm, as in odd/even sorting
Parallel Sorting

- Sorting is fundamental algorithm in data processing
 - Given an unordered set of keys $x_0, x_1, \ldots, x_{N-1}$
 - Return the keys in sorted order
- The keys may be character strings, floating point numbers, integers, or any object for which the relations $>$, $<$, and $==$ hold
- We’ll assume integers here
- Will talk about other algorithms later on
Compare and exchange sorts

• Simplest sort, based on the bubble sort algorithm
• The fundamental operation is compare-exchange
• Compare-exchange(a[j], a[j+1])
 ‣ swaps its arguments if they are in decreasing order
 ‣ satisfies the post-condition that $a[j] \leq a[j+1]$
 ‣ Returns FALSE if a swap was made

```latex
for i = N-1 to 1 by -1 do
  done = TRUE;
  for j = 0 to i-1 do // Compare-exchange(a[j], a[j+1])
    if (a[i] < a[j]) { a[i] $\leftrightarrow$ a[j];
      done = FALSE; } 
  end do
  if (done) break;
end do
```
Loop carried dependencies

• We cannot parallelize bubble sort owing to the *loop carried dependence* in the inner loop

• The value of \(a[j] \) computed in iteration \(j \) depends on the \(a[i] \) computed in iterations \(0, 1, ..., j-1 \)

\[
\text{for } i = N-1 \text{ to } 1 \text{ by } -1 \text{ do}
\]
\[
\text{done} = \text{TRUE};
\]
\[
\text{for } j = 0 \text{ to } i-1 \text{ do}
\]
\[
\text{done} = \text{Compare-exchange}(a[j], a[j+1])
\]
\[
\text{end do}
\]
\[
\text{if (done) break;}
\]
\[
\text{end do}
\]
Odd/Even sort

• If we re-order the comparisons we can parallelize the algorithm
 ‣ number the points as even and odd
 ‣ alternate between sorting the odd and even points
• This algorithm parallelizes since there are no loop carried dependences
• All the odd (even) points are decoupled
The algorithm

done = false;

for i = 0 to n–1 do

 for j = 0 to n–1 by 2 do // Even
 done &= Compare-exchange(a[j] , a[j+1]);
 end do

 for j = 1 to n–1 by 2 do // Odd
 done &= Compare-exchange(a[j] , a[j+1]);
 end do
 if (done) break;

end do
int OE = lo % 2; // Global int OE;
for (s = 0; s < MaxIter; s++) {
 bsync();
 int done = Sweep(Keys, OE, lo, hi, NT, TID); // Odd phase */

 bsync();
done &= Sweep(Keys, 1-OE, lo, hi, NT, TID); // Even phase */

 int allDone = AllDone(done, TID);

 if (allDone){
 s++;
 break;
 }
} /* End For */
Inside Sweep

```c
int Sweep(int *Keys, int OE, int lo, int hi, int NT, int TID) {
    int Hi = hi;
    if (TID == NT-1)
        Hi--;
    int done = 1;
    for (int i = OE+lo; i <= Hi; i+=2) {
        if (Keys[i] > Keys[i+1]) {
            Keys[i] ↔ Keys[i+1];
            done = 0;
        }
    }
    return done;
}
```
In class problem solving
Time constrained scaling

• Sum N numbers on P processors
• Let N >> P
• Determine the largest problem that can be solved in time T=10^4 time units on 512 processors
• Let time to perform one addition = 1 time unit
• Let $\beta =$ time to add a value inside a critical section
Performance model

- Local additions: $N/P - 1$
- Reduction: $\beta (\lg P - 1)$
- Since $N >> P$
 \[T(N,P) \sim \frac{N}{P} + \beta (\lg P - 1) \]
- Determine the largest problem that can be solved in time $T = 10^4$ time units on $P=512$ processors, $\beta = 1000$ time units
- Constraint: $T(512,N) \leq 10^4$
 \[(N/512) + 1000 (\lg 512 - 1) = (N/512) + 1000*(8) \leq 10^4 \]
 \[\Rightarrow \ N \leq 1 \times 10^6 \text{ (approximately)} \]